دانلود ها ی دارای تگ: "datascience"
133 مورد برای عبارت مورد نظر پیدا شد.
133 مورد برای عبارت مورد نظر پیدا شد.
کراس (Keras) یک کتابخانهٔ متنباز شبکه عصبی است که به زبان پایتون نوشته شده است و قابل است که بر روی تنسورفلو یا ثینو قابل اجرا است. این نرمافزار به منظور آزمایش کردن سریع یادگیری عمیق طراحی شده است و در طراحی آن بر روی کوچک، ماژولار و قابل گسترش بودن توجه شده است. یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود.
در دوره آموزشی Applied Deep Learning with Keras با آموزش یادگیری عمیق با کراس اشنا خواهید شد.
Apache Spark ، یک چارچوب محاسباتی برای داده های عظیم است. Spark از MapReduce به عنوان موتور اجرای خود، استفاده نمی کند اما بخوبی با هادوپ یکپارچه است. در واقع Spark میتواند در Yarn اجرا شود و با فرمت دادهای هادوپ و HDFS کار کند. Spark بیشتر بخاطر توانایی نگهداشتن مجموعه داده های بین کارها، در حافظه، شناخته می شود. این قابلیت Spark سبب می شود تا سریعتر از جریان کاری MapReduce معادل که مجموعه داده های همیشه از دیسک بار می شوند، عمل کند. دو نوع کاربردی که از مدل پردازشی Spark بهره می برند، الگوریتم های تکرار شونده (که یک تابع بر روی مجموعه دادهای بهصورت تکراری تا حصول شرط خروج، اعمال میگردد، و تحلیل تعاملی(که یک کاربر مجموعه ای از پرس و جوهای اکتشافی تک کاره را بر روی مجموعه ای داده ها، اعمال می کنند) است. همچنین اسپارک APIهایی در زبانهای Java، Scala و Python، ارایه می کند. پروژه Apache Spark شامل ماژول های یادگیری ماشین(MLlib)، پردازش گراف (GraphX)، پردازش جریانی( (Spark Streaming)، و SQL (Spark SQL است.
در دوره آموزشی Big Data Analysis with Apache Spark PySpark: Hands on Python با آموزش آنالیز داده های حجیم با پای اسپارک اشنا خواهید شد.
هوش مصنوعی یا هوش ماشینی (Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان میدهد، گفته میشود. به عبارت دیگر هوش مصنوعی به سیستمهایی گفته میشود که میتوانند واکنشهایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیهسازی فرایندهای تفکری و شیوههای استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوهها و الگوریتمهایی میپردازد که بر اساس آنها رایانهها و سامانهها توانایی تعلٌم و یادگیری پیدا میکنند. هدف یادگیری ماشین این است که کامپیوتر (در کلیترین مفهوم آن) بتواند به تدریج و با افزایش دادهها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. رگرسیون خطی یا تنازل خطی یا وایازی خطی (Linear regression) یکی از روشهای تحلیل رگرسیون است. در رگرسیون خطّی، متغیّر وابسته ترکیب خطیای از ضرایب (پارامترها) است (لازم نیست که نسبت به متغیرهای مستقل خطی باشد).
در دوره آموزشی Linear Regression Analysis in Python for Machine Learning با آموزش آنالیز رگرسیون خطی در پایتون برای یادگیری ماشین اشنا خواهید شد.
R، یک زبان برنامهنویسی و محیط نرمافزاری برای محاسبات آماری و علم دادهها است، که بر اساس زبانهای اس و اسکیم پیادهسازی شده است. این نرمافزار متن باز، تحت اجازهنامه عمومی همگانی گنو عرضه شده و به رایگان قابل دسترس است. زبان اس بجز R، توسط شرکت Insightful، در نرمافزار تجاری اسپلاس نیز پیادهسازی شده است. اگرچه دستورات اسپلاس و R بسیار شبیه است لیکن این دو نرمافزار دارای هستههای متمایزی میباشند. R، حاوی محدودهٔ گستردهای از تکنیکهای آماری (از جمله: مدلسازی خطی و غیرخطی، آزمونهای کلاسیک آماری، تحلیل سریهای زمانی، ردهبندی، خوشهبندی و غیره) و قابلیتهای گرافیکی است. در محیط R، کدهای سی، سی++ و فورترن قابلیت اتصال و فراخوانی هنگام اجرای برنامه را دارند و کاربران خبره میتوانند توسط کدهای سی، مستقیماً اشیا R را تغییر دهند. گرچه R اغلب به منظور انجام محاسبات آماری به کار میرود، این نرمافزار قابل به کارگیری در محاسبات ماتریسی است و در این زمینه، همپای نرمافزارهایی چون اُکتاو و نسخهٔ تجاری آن متلب (MATLAB) است. R، همچنین نرمافزار قدرتمندی برای ایجاد اشکال گرافیکی و نمودارهاست.
در دوره آموزشی Predictive Analytics using R 3.5 با آموزش تحلیل پیش بینی کننده با زبان آر اشنا خواهید شد.
علم داده (Data Science)، دانشی میانرشتهای پیرامون استخراج دانش و آگاهی از مجموعهای داده و اطلاعات است. علم داده از ترکیب مباحث مختلفی به وجود آمده و بر مبانی و روشهای موجود در حوزههای مختلف علمی بنا شدهاست. تعدادی از این حوزهها عبارتند از: ریاضیات، آمار، مهندسی داده، بازشناخت الگو و... هدف این علم، استخراج مفهوم از داده و تولید محصولات دادهمحور است.
آقایان توماس دونپورت و دی جی پاتیل در سال ۲۰۱۲ در مقاله «علم داده: جذابترین شغل قرن بیست و یکم» متخصصین علم داده را این طور تعریف میکنند: کسانی که میدانند چگونه میتوان از انبوه اطلاعات بدون ساختار پاسخ سوالهای کسبوکار را پیدا کرد. استنتون در سال ۲۰۱۳ علم داده را این طور تعریف میکند: علم داده رشته در حال ظهوری است که به جمعآوری، آمادهسازی، تحلیل، بصریسازی، مدیریت و نگهداشت اطلاعات در حجم بالا میپردازد. دریسکول در سال ۲۰۱۴ علم داده را این طور تعریف میکند: علم داده مهندسی عمران دادههاست. متخصص علم داده دانشی کاربردی از دادهها و ابزارها دارد به علاوه درک تئوریکی دارد که مشخص میکند چه چیزی از نظر علمی ممکن است. به شاغلین در حوزهٔ علم داده، متخصص علم داده (data scientist) میگویند.
در دوره آموزشی Python Data Science basics with Numpy, Pandas and Matplotlib با آموزش مقدماتی علوم داده با پایتون، نام پای، پانداس و مت پلات لایب اشنا خواهید شد.