یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی Packt Practical Deep Learning on the Cloud با آموزش یادگیری عمیق بر بستر ابر اشنا خواهید شد.
یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود.کرس (Keras) یک کتابخانهٔ متنباز شبکه عصبی است که به زبان پایتون نوشته شده است و قابل است که بر روی تنسورفلو یا ثینو قابل اجرا است. این نرمافزار به منظور آزمایش کردن سریع یادگیری عمیق طراحی شده است و در طراحی آن بر روی کوچک، ماژولار و قابل گسترش بودن توجه شده است. در دوره آموزشی Udemy Deep Learning Regression with R با آموزش یادگیری عمیق رگرسیون با آر اشنا خواهید شد.
به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوهها و الگوریتمهایی میپردازد که بر اساس آنها رایانهها و سامانهها توانایی تعلٌم و یادگیری پیدا میکنند. هدف یادگیری ماشین این است که کامپیوتر (در کلیترین مفهوم آن) بتواند به تدریج و با افزایش دادهها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه میتواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گامبرداری روباتهای دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهشهایی که در یادگیری ماشینی میشود گستردهاست. در سوی نظری آن پژوهشگران بر آناند که روشهای یادگیری تازهای به وجود بیاورند و امکانپذیری و کیفیت یادگیری را برای روشهایشان مطالعه کنند و در سوی دیگر عدهای از پژوهشگران سعی میکنند روشهای یادگیری ماشینی را بر مسایل تازهای اعمال کنند. البته این طیف گسسته نیست و پژوهشهای انجامشده دارای مولفههایی از هر دو رویکرد هستند. در دوره آموزشی Udemy The Ultimate 2019 Deep Learning & Machine Learning Bootcamp با آموزش کامل یادگیری عمیق و یادگیری ماشین اشنا خواهید شد.
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی Packt Deep Learning with Java با آموزش یادگیری عمیق با جاوا اشنا خواهید شد.
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی Packt Deep Learning with Real World Projects با آموزش یادگیری عمیق همراه با پروژه های واقعی اشنا خواهید شد.
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی Packt Deep Learning Projects with JavaScript با آموزش پروژه های یادگیری عمیق با جاوا اسکریپت آشنا می شوید.
یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. در دوره آموزشی Livelessons Deep Reinforcement Learning and GANs: Advanced Topics in Deep Learning با آموزش یادگیری عمیق تقویتی و گانز و مباحث پیشرفته یادگیری عمیق آشنا می شوید.
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی O'Reilly Introduction to Deep Learning Using PyTorch با آموزش مقدماتی یادگیری عمیق با پای تورچ آشنا می شوید.
یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود.کرس (Keras) یک کتابخانهٔ متنباز شبکه عصبی است که به زبان پایتون نوشته شده است و قابل است که بر روی تنسورفلو یا ثینو قابل اجرا است. این نرمافزار به منظور آزمایش کردن سریع یادگیری عمیق طراحی شده است و در طراحی آن بر روی کوچک، ماژولار و قابل گسترش بودن توجه شده است. در دوره آموزشی Livelessons Deep Learning for Natural Language Processing: Applications of Deep Neural Networks to Machine Learning Tasks با یادگیری عمیق برای پردازش زبان طبیعی: اپ های شبکه های عصبی عمیق برای فرآیندهای یادگیری ماشین آشنا می شوید.
دسته:
آموزش ←
برنامه نویسی و طراحی وب
|
کسب و کار
,
کاربردی
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعهای از الگوریتمها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل میکنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگیها در لایههای مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) میتواند به صورتهای گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکلهای کوچکتر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روشهای مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) میشود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگیهای تصویر به دست بشر (مانند اعضای گربه) با روشهای کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاختههای عصبی با فرستادن پیام به یکدیگر درک را امکانپذیر میکنند. بسته به فرضهای گوناگون در مورد نحوهٔ اتصال این یاختههای عصبی، مدلها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شدهاند، هرچند که این مدلها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگیهای بیشتری را دارا است. این مدلها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفتهای خوبی را در حوزههای پردازش زبانهای طبیعی، پردازش تصویر ایجاد کردهاند. در دوره آموزشی O'Reilly The Business of Deep Learning با یادگیری عمیق در کسب و کار و ویژگی های آن آشنا می شوید.