دانلود ها ی دارای تگ: "distributed computing"

2 مورد برای عبارت مورد نظر پیدا شد.

دانلود A Big Data Hadoop and Spark project for absolute beginners - آموزش مقدماتی بیگ دیتا هادوپ و اسپارک

  • بازدید: 4,797
دانلود A Big Data Hadoop and Spark project for absolute beginners - آموزش مقدماتی بیگ دیتا هادوپ و ا
(1402/10/22) تغییرات:

دوره بروزرسانی شد.

هادوپ یک نرم افزار کد باز (Open source) است که برای تقسیم بندی و توزیع فایل های متمرکز به کار می رود. هادوپ تحت لیسانس آپاچی (Apache) ارائه می شود و توسط جاوا برنامه نویسی شده است. امّا هادوپ چگونه به وجود آمد؟ شرکت گوگل در پی افزایش حجم تبادل اطلاعات، به دنبال راه حلّی برای افزایش سرعت و راندمان سرورهای خود بود که سیستم توزیع (Distribution) منحصر به فردی برای خود ابداع کرد به نام GFS که مخفف Google File System بود. در پی این موفقیت، انجمن توزیع Apache به فکر گسترش این تکنولوژی در سطح وسیع تری افتاد و سیستم هادوپ به وجود آمد. هادوپ یک فریم ورک یا مجموعه ای از نرم افزارها و کتابخانه هایی است که ساز و کار پردازش حجم عظیمی از داده های توزیع شده را فراهم می کند. در واقع Hadoop را می توان به یک سیستم عامل تشبیه کرد که طراحی شده تا بتواند حجم زیادی از داده ها را بر روی ماشین های مختلف پردازش و مدیریت کند. Apache Spark، یک چارچوب محاسباتی برای داده ­های عظیم است. Spark از MapReduce به عنوان موتور اجرای خود، استفاده نمی­ کند اما بخوبی با هادوپ یکپارچه است. در واقع Spark می­تواند در Yarn اجرا شود و با فرمت داده­ای هادوپ و HDFS کار کند. Spark بیشتر بخاطر توانایی نگهداشتن مجموعه ­داده ه­ای بین کارها، در حافظه، شناخته می­ شود. این قابلیت Spark سبب می­ شود تا سریعتر از جریان کاری MapReduce معادل که مجموعه­ داده­ های همیشه از دیسک بار می­ شوند، عمل کند.
در دوره آموزشی A Big Data Hadoop and Spark project for absolute beginners با آموزش مقدماتی بیگ دیتا هادوپ و اسپارک اشنا خواهید شد.

دانلود Big Data Analysis with Apache Spark PySpark: Hands on Python - آموزش آنالیز داده های حجیم با پای اسپارک

  • بازدید: 6,946
دانلود Big Data Analysis with Apache Spark PySpark: Hands on Python - آموزش آنالیز داده های حجیم با

 Apache Spark ، یک چارچوب محاسباتی برای داده ­های عظیم است. Spark از MapReduce به عنوان موتور اجرای خود، استفاده نمی­ کند اما بخوبی با هادوپ یکپارچه است. در واقع Spark می­تواند در Yarn اجرا شود و با فرمت داده­ای هادوپ و HDFS کار کند. Spark بیشتر بخاطر توانایی نگهداشتن مجموعه ­داده ه­ای بین کارها، در حافظه، شناخته می­ شود. این قابلیت Spark سبب می­ شود تا سریعتر از جریان کاری MapReduce معادل که مجموعه­ داده­ های همیشه از دیسک بار می­ شوند، عمل کند. دو نوع کاربردی که از مدل پردازشی Spark بهره می­ برند، الگوریتم ­های تکرار شونده (که یک تابع بر روی مجموعه داده­ای به‌صورت تکراری تا حصول شرط خروج، اعمال می­گردد، و تحلیل تعاملی(که یک کاربر مجموعه ای از پرس و جوهای اکتشافی تک کاره را بر روی مجموعه ای داده­ ها، اعمال می­ کنند) است. همچنین اسپارک APIهایی در زبان­های Java، Scala و Python، ارایه می ­کند. پروژه Apache Spark شامل ماژول ­های یادگیری ماشین(MLlib)، پردازش گراف (GraphX)، پردازش جریانی( (Spark Streaming)، و SQL (Spark SQL است.
در دوره آموزشی Big Data Analysis with Apache Spark PySpark: Hands on Python با آموزش آنالیز داده های حجیم با پای اسپارک اشنا خواهید شد.