دانلود ها ی دارای تگ: "machine learning"

65 مورد برای عبارت مورد نظر پیدا شد.

دانلود Udemy Python Machine Learning Basics: Shallow Learning Bootcamp - آموزش مقدماتی یادگیری ماشین با پایتون: آموزش سطحی

  • بازدید: 5,998
دانلود Udemy Python Machine Learning Basics: Shallow Learning Bootcamp - آموزش مقدماتی یادگیری ماشین
پایتون یک زبان برنامه نویسی شی گرا و بسیار محبوب بوده و فلسفه اصلی ایجاد آن تاکید بر دو هدف خوانایی بالای برنامه و نیز کوتاهی و بازدهی مناسب آن است. یکی از ویژگی های پایتون متن باز بودن آن است که باعث شده داکیومنت های فراوان و کتابخانه های آماده ی بسیار زیادی برای آن وجود داشته باشد که کار برنامه نویسی را بسیار آسان می کند. از طرف دیگر به لطف وجود فریمورک های مختلف برای پایتون می توان به وسیله ی آن برنامه های تحت وب و نیز تلفن همراه نیز تولید کرد. یکی از حوزه های تکنولوژی که نقشی قابل توجه در بهبود سرویس های ارائه شده در تلفن های همراه و فضای مجازی دارد، یادگیری ماشینی است. گاهی اوقات دو عبارت یادگیری ماشینی و هوش مصنوعی به جای یکدیگر مورد استفاده قرار می گیرند و این مساله به خصوص زمانی که یک شرکت بزرگ قصد دارد از جدیدترین نوآوری هایش سخن بگوید بیشتر به چشم می خورد، با این همه هوش مصنوعی و یادگیری ماشینی دو حوزه کاملا مجزا و البته متصل به یکدیگر در علم کامپیوتر به شمار می روند.
در دوره آموزشی Udemy Python Machine Learning Basics: Shallow Learning Bootcamp به آموزش یادگیری ماشین با پایتون به صورت سطحی می پردازیم.

دانلود Udemy Advanced Machine Learning & Data Analysis Projects Bootcamp - آموزش پیشرفته یادگیری ماشین و آنالیز داده ها

  • بازدید: 9,012
دانلود Udemy Advanced Machine Learning & Data Analysis Projects Bootcamp - آموزش پیشرفته یادگیری ماش
 به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند. هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری آن پژوهشگران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو رویکرد هستند.
در دوره ی آموزشی Udemy Advanced Machine Learning & Data Analysis Projects Bootcamp با مفاهیم پیشرفته یادگیری ماشین و آنالیز داده ها آشنا می شوید.  

دانلود Udemy Python For Machine Learning - آموزش یادگیری ماشین با پایتون

  • بازدید: 43,909
دانلود Udemy Python For Machine Learning - آموزش یادگیری ماشین با پایتون
پایتون یک زبان برنامه نویسی شی گرا و بسیار محبوب بوده و فلسفه اصلی ایجاد آن تاکید بر دو هدف خوانایی بالای برنامه و نیز کوتاهی و بازدهی مناسب آن است. یکی از ویژگی های پایتون متن باز بودن آن است که باعث شده داکیومنت های فراوان و کتابخانه های آماده ی بسیار زیادی برای آن وجود داشته باشد که کار برنامه نویسی را بسیار آسان می کند. از طرف دیگر به لطف وجود فریمورک های مختلف برای پایتون می توان به وسیله ی آن برنامه های تحت وب و نیز تلفن همراه نیز تولید کرد. یکی از حوزه های تکنولوژی که نقشی قابل توجه در بهبود سرویس های ارائه شده در تلفن های همراه و فضای مجازی دارد، یادگیری ماشینی است. گاهی اوقات دو عبارت یادگیری ماشینی و هوش مصنوعی به جای یکدیگر مورد استفاده قرار می گیرند و این مساله به خصوص زمانی که یک شرکت بزرگ قصد دارد از جدیدترین نوآوری هایش سخن بگوید بیشتر به چشم می خورد، با این همه هوش مصنوعی و یادگیری ماشینی دو حوزه کاملا مجزا و البته متصل به یکدیگر در علم کامپیوتر به شمار می روند.
در دوره آموزشی Udemy Python For Machine Learning به آموزش یادگیری ماشین با پایتون می پردازیم.

دانلود LiveLessons Essential Machine Learning and AI with Python and Jupyter Notebook - آموزش ملزومات یادگیری ماشین و هوش مصنوعی با پایتون و ژوپیتر

  • بازدید: 12,185
دانلود LiveLessons Essential Machine Learning and AI with Python and Jupyter Notebook - آموزش ملزوما
هوش مصنوعی یا هوش ماشینی (Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان می‌دهد، گفته می‌شود. به عبارت دیگر هوش مصنوعی به سیستم‌هایی گفته می‌شود که می‌توانند واکنش‌هایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیه‌سازی فرایندهای تفکری و شیوه‌های استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. بیشتر نوشته‌ها و مقاله‌های مربوط به هوش مصنوعی، آن را به عنوان «دانش شناخت و طراحی عامل‌های هوشمند» تعریف کرده‌اند. هوش مصنوعی را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانش‌ها، علوم، و فنون قدیم و جدید دانست. ریشه‌ها و ایده‌های اصلی آن را باید در فلسفه، زبان‌شناسی، ریاضیات، روان‌شناسی، عصب‌شناسی، فیزیولوژی، تئوری کنترل، احتمالات و بهینه‌سازی جستجو کرد و کاربردهای گوناگون و فراوانی در علوم رایانه، علوم مهندسی، علوم زیست‌شناسی و پزشکی، علوم اجتماعی و بسیاری از علوم دیگر دارد.
در دوره LiveLessons Essential Machine Learning and AI with Python and Jupyter Notebook با آموزش ملزومات یادگیری ماشین و هوش مصنوعی با پایتون و ژوپیتر آشنا می شوید.

دانلود Udemy Machine Learning with Python: Data Science for Beginners - آموزش مقدماتی علوم داده و یادگیری ماشین با پایتون

  • بازدید: 11,339
دانلود Udemy Machine Learning with Python: Data Science for Beginners - آموزش مقدماتی علوم داده و یا
علم داده‌ ها (Data Science)، مطالعاتی پیرامون استخراج دانش و آگاهی از مجموعه‌ای داده و اطلاعات است. هدف این علم، استخراج مفهوم از داده و تولید محصولات داده‌ محور است. به شاغلین در حوزه ی علم داده، داده پژوه (data scientist) می گویند. یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) است که به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلم و یادگیری پیدا می‌کنند.
یکی از لذت بخش ترین و جزو 10 تا از بهترین و پرطرفدارترین شغل های جهان علوم داده است. این شغل به طور متوسط در دنیا در آمدی حدود 120 هزار دلار دارد. موضوع فقط پول نیست و جذابیت بی نظیر آن برای خیلی ها شگفت انگیز است. اگر شما یک برنامه نویس هستید یا تجربه نوشتن اسکریپت دارید، این دوره آموزشی به شما آموزش می دهد که چکونه از علوم داده در جهت بهره وری بیشتر کار خود در صنعت و یا هرجای دیگر استفاه کنید.
در دوره آموزشی Udemy Machine Learning with Python: Data Science for Beginners با مفاهیم علوم داده و یادگیری ماشین و پیاده سازی آن با استفاده از پایتون آشنا می شوید.

دانلود Lynda Machine Learning & AI Foundations: Linear Regression - آموزش مبانی یادگیری ماشین و هوش مصنوعی: رگرسیون خطی

  • بازدید: 9,498
دانلود Lynda Machine Learning & AI Foundations: Linear Regression - آموزش مبانی یادگیری ماشین و هوش
هوش مصنوعی یا هوش ماشینی (Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان می‌دهد، گفته می‌شود. به عبارت دیگر هوش مصنوعی به سیستم‌هایی گفته می‌شود که می‌توانند واکنش‌هایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیه‌سازی فرایندهای تفکری و شیوه‌های استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند. هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. رگرسیون خطی یا تنازل خطی یا وایازی خطی (Linear regression) یکی از روشهای تحلیل رگرسیون است. در رگرسیون خطّی، متغیّر وابسته ترکیب خطی‌ای از ضرایب (پارامترها) است (لازم نیست که نسبت به متغیرهای مستقل خطی باشد).
در دوره Lynda Machine Learning & AI Foundations: Linear Regression با آموزش مبانی یادگیری ماشین و هوش مصنوعی و رگرسیون خطی آشنا می شوید.

دانلود Packt Fundamentals of Machine Learning with scikit-learn - آموزش اصول و مبانی یادگیری ماشین

  • بازدید: 7,017
دانلود Packt Fundamentals of Machine Learning with scikit-learn - آموزش اصول و مبانی یادگیری ماشین
به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند. هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری آن پژوهشگران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو رویکرد هستند.
در دوره ی آموزشی Packt Fundamentals of Machine Learning with scikit-learn با مفاهیم یادگیری ماشین آشنا می شوید.  

دانلود Machine Learning A-Z™: Hands-On Python & R In Data Science - آموزش کامل یادگیری ماشین: آشنایی با پایتون و آر در علوم داده

  • بازدید: 27,571
دانلود Machine Learning A-Z™: Hands-On Python & R In Data Science - آموزش کامل یادگیری ماشین: آشنایی
علم داده (Data Science)، دانشی میان‌رشته‌ای پیرامون استخراج دانش و آگاهی از مجموعه‌ای داده و اطلاعات است. علم داده از ترکیب مباحث مختلفی به وجود آمده و بر مبانی و روش‌های موجود در حوزه‌های مختلف علمی بنا شده‌است. R، یک زبان برنامه‌نویسی و محیط نرم‌افزاری برای محاسبات آماری و علم داده‌ها است، که بر اساس زبان‌های اس و اسکیم پیاده‌سازی شده است. این نرم‌افزار متن باز، تحت اجازه‌نامه عمومی همگانی گنو عرضه شده و به رایگان قابل دسترس است. زبان اس بجز R، توسط شرکت Insightful، در نرم‌افزار تجاری اس‌پلاس نیز پیاده‌سازی شده است. اگرچه دستورات اس‌پلاس و R بسیار شبیه است لیکن این دو نرم‌افزار دارای هسته‌های متمایزی می‌باشند. یادگیری بی نظارت (بدون نظارت، در مقابل یادگیری بانظارت)، یکی از انواع یادگیری در یادگیری ماشینی است. اگر یادگیری بر روی داده‌های بدون برچسب و برای یافتن الگوهای پنهان در این داده‌ها انجام شود، یادگیری، بدون نظارت خواهد بود. از انواع یادگیری بدون نظارت می‌توان به خوشه‌بندی، مدل پنهان مارکوف و برخی شبکه‌های عصبی مصنوعی اشاره کرد. پایتون یک زبان برنامه نویسی شی گرا و بسیار محبوب بوده و فلسفه اصلی ایجاد آن تاکید بر دو هدف خوانایی بالای برنامه و نیز کوتاهی و بازدهی مناسب آن است. یکی از ویژگی های پایتون متن باز بودن آن است که باعث شده داکیومنت های فراوان و کتابخانه های آماده ی بسیار زیادی برای آن وجود داشته باشد که کار برنامه نویسی را بسیار آسان می کند.
در دوره آموزشی Machine Learning A-Z™: Hands-On Python & R In Data Science به طور کامل با یادگیری ماشین و آشنایی با پایتون و آر در علوم داده آشنا می شوید.

دانلود Weka v3.9.2 x86/x64 - نرم افزار داده کاوی وکا

  • بازدید: 34,332
دانلود Weka v3.9.2 x86/x64 - نرم افزار داده کاوی وکا
داده کاوی یا دیتاماینینگ (Data Mining) به مفهوم استخراج اطلاعات نهان یا الگوها و روابط مشخص در میان حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ می باشد در واقع می توان آن را مترادف واژه‌های رایجی چون کشف دانش از داده‌ها دانست که قادر به تبدیل مقدار زیادی از داده به قسمت های معنی دار و با قواعد می باشد.
Weka یک نرم افزار ﺩﺍﺩﻩ ﮐﺎﻭﯼ همراه با ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ و ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﻫﺎﯼ ﺯﻳﺎﺩ ﺑﺮﺍﯼ پردازش کردن، کلاستر بندی، طبقه بندی و رگرسیون می باشد که ﺑﺮﺧﻮﺭﺩﺍﺭﯼ ﺍﺯ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺎﻳﻞ ﺩﺍﺩﻩ ﻫﺎ ﺍﻣﮑﺎﻥ ﭘﺬﻳﺮ ﻣﯽ ﺑﺎﺷﺪ. همچنین ﻭﮐﺎ ﺍﻣﮑﺎﻥ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻫﺎﯼ ﭘﻴﺎﺩﻩ سازی ﺷﺪﻩ ﺑﺎ ﺯباﻥ ﺍﺳﮑﻴﻮاﻝ ﺭﺍ ﻧﻴﺰ ﻓﺮﺍﻫﻢ ﻣﯽ ﮐﻨﺪ ﻭ ﻣﯽ ﺗﻮﺍﻧﺪ ﻧﺘﺎﻳﺞ ﻣﻮﺭﺩ ﻧﻈﺮ ﺭﺍ ﺩﺭ ﻗﺎﻟﺐ ﻳﮏ ﭘﺮﺱ ﻭ ﺟﻮ ﺑﺎ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ارائه دهد. این نرم افزار ﺷﺎﻣﻞ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﺍﺯ ﺍﺑﺰﺍﺭ ﻫﺎﯼ ﺩﻳﺪﺍﺭﯼ ﺳﺎﺯﯼ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﻳﯽ ﺑﺮﺍﯼ ﺁﻧﺎﻟﻴﺰ ﻭ ﺑﺮﺭﺳﯽ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﭘﻴﺶ ﺑﻴﻨﯽ ﺁﻧﻬﺎ ﻣﯽ ﺑﺎﺷﺪ که به صورت اوپن سورس ارائه شده و ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﭘﻠﺘﻔﺮﻡ ﺧﺎﺻﯽ ﻧﻴﺴﺖ ﻭ ﺑﺮ ﺭﻭﯼ ﺗﻤﺎﻡ ﭘﻠﺘﻔﺮﻡ ﻫﺎﯼ ﻣﺤﺎﺳﺒﺎﺗﯽ ﮐﻪ ﺟﺎﻭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ﻗﺎﺑﻞ ﻧﺼﺐ ﻣﯽ ﺑﺎﺷﺪ.

دانلود ++Packt Machine Learning with C - آموزش یادگیری ماشین با سی پلاس پلاس

  • بازدید: 8,576
دانلود ++Packt Machine Learning with C - آموزش یادگیری ماشین با سی پلاس پلاس
به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلٌم و یادگیری پیدا می‌کنند. هدف یادگیری ماشین این است که کامپیوتر (در کلی‌ترین مفهوم آن) بتواند به تدریج و با افزایش داده‌ها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه می‌تواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گام‌برداری روبات‌های دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهش‌هایی که در یادگیری ماشینی می‌شود گسترده‌است. در سوی نظری آن پژوهشگران بر آن‌اند که روش‌های یادگیری تازه‌ای به وجود بیاورند و امکان‌پذیری و کیفیت یادگیری را برای روش‌های‌شان مطالعه کنند و در سوی دیگر عده‌ای از پژوهش‌گران سعی می‌کنند روش‌های یادگیری ماشینی را بر مسایل تازه‌ای اعمال کنند. البته این طیف گسسته نیست و پژوهش‌های انجام‌شده دارای مولفه‌هایی از هر دو رویکرد هستند.
در دوره آموزشی ++Packt Machine Learning with C با اصول و نحوه پیاده سازی الگوریتم های ماشین لرنینگ آشنا می شوید.