دانلود ها ی دارای تگ: "آموزش یادگیری ماشین"
8 مورد برای عبارت مورد نظر پیدا شد.
8 مورد برای عبارت مورد نظر پیدا شد.
این دوره برای افرادی طراحی شده است که مایلند مهارتهای خود را به عنوان متخصص یادگیری ماشین ارتقا دهند، اما نمیدانند از کجا شروع کنند. برای دستیابی به این هدف، نیازی به آموزش رسمی در علم داده نیست. در طول این دوره، مَت هریسون به عنوان مدرس، شرکتکنندگان را با مفاهیم کلیدی یادگیری ترکیبی آشنا میکند. در این دوره، روشهای مختلف یادگیری ترکیبی از جمله بگینگ (Bagging)، بوستینگ (Boosting) و استکینگ (Stacking) بررسی میشوند. شرکتکنندگان یاد میگیرند که چگونه این روشها را با استفاده از کتابخانههای محبوب پایتون مانند سایکیتلرن (scikit-learn) و ایکسجیبوست (XGBoost) پیادهسازی کنند. در پایان این دوره، شرکتکنندگان به مهارتهای لازم برای پیادهسازی و بهینهسازی مدلهای ترکیبی در وظایف واقعی یادگیری ماشین مجهز خواهند شد. این دوره با گیتهاب کداسپیسز (GitHub Codespaces) یکپارچه شده است؛ یک محیط توسعهدهنده ابری فوری که تمام قابلیتهای IDE مورد علاقه شما را بدون نیاز به هیچ گونه تنظیمات محلی فراهم میکند. با استفاده از گیتهاب کداسپیسز، میتوان در هر زمان و از هر دستگاهی به صورت عملی تمرین کرد – و این در حالی است که از ابزاری استفاده میشود که به احتمال زیاد در محیط کار نیز با آن مواجه خواهید شد. برای شروع کار، مطالعه بخش "استفاده از گیتهاب کداسپیسز" همراه با این دوره توصیه میشود. این دوره به شرکتکنندگان کمک میکند تا درک عمیقی از یادگیری ترکیبی پیدا کرده و آن را در پروژههای خود به کار گیرند، که این امر به بهبود عملکرد مدلهای یادگیری ماشین و افزایش دقت پیشبینیها منجر میشود. تأکید این دوره بر جنبههای عملی پیادهسازی و استفاده از ابزارهای صنعتی است تا شرکتکنندگان بتوانند دانش خود را مستقیماً در سناریوهای واقعی به کار گیرند و به متخصصانی کارآمد در زمینه یادگیری ماشین تبدیل شوند.
در دوره آموزشی Applied Machine Learning: Ensemble Learning با پیادهسازی و بهینهسازی مدلهای یادگیری ترکیبی آشنا خواهید شد.
این دوره آموزشی به معرفی مفاهیم و تکنیکهای کلیدی یادگیری ماشین میپردازد و نحوه پیادهسازی آنها با استفاده از زبان برنامهنویسی R، مجموعه ابزارهای tidyverse و بسته mlr را آموزش میدهد. شرکتکنندگان در این دوره با روشهای مختلف پیشپردازش دادهها، انتخاب ویژگی، ساخت و ارزیابی مدلهای یادگیری ماشین برای مسائل طبقهبندی و رگرسیون آشنا خواهند شد. همچنین، نحوه استفاده از ابزارهای بصریسازی دادهها برای درک بهتر نتایج مدلها و ارائه آنها به مخاطبان غیرمتخصص مورد بررسی قرار میگیرد. این دوره برای افرادی که به دنبال کسب مهارتهای عملی در زمینه یادگیری ماشین و استفاده از R برای تحلیل دادههای پیچیده هستند، طراحی شده است. با گذراندن این دوره، شرکتکنندگان قادر خواهند بود تا با استفاده از ابزارهای قدرتمند R، مسائل واقعی دنیای کسبوکار را با رویکردهای یادگیری ماشین حل کنند.
در دوره آموزشی Machine Learning with R, the tidyverse, and mlr. Video Edition با مفاهیم و ابزارهای یادگیری ماشین در محیط R آشنا خواهید شد.
این دوره آموزشی جامع، شرکتکنندگان را با مفاهیم اساسی و پیشرفته یادگیری ماشین آشنا میکند. در این دوره، شرکتکنندگان با فرآیند پیشپردازش دادهها، ساخت و ارزیابی انواع مدلهای رگرسیونی و طبقهبندی، و همچنین تکنیکهای پیشرفتهای مانند یادگیری جمعی و خوشهبندی آشنا میشوند. این دوره با تاکید بر کاربردهای عملی یادگیری ماشین، به شرکتکنندگان این امکان را میدهد تا با استفاده از زبان برنامهنویسی پایتون و کتابخانههای مربوطه، مهارتهای لازم برای حل مسائل واقعی را کسب کنند و یک نمونه کار قوی برای ورود به بازار کار ایجاد نمایند. علاوه بر این، شرکتکنندگان تکنیکهای پیشرفتهای مانند یادگیری جمعی، خوشهبندی و کاهش ابعاد را فرا خواهند گرفت. آنها نحوه پیادهسازی یادگیری قوانین وابستگی برای کشف الگو در دادههای خردهفروشی و تجارت الکترونیک را خواهند آموخت. در طول دوره، شرکتکنندگان توسعه و ارزیابی مدلها را با استفاده از پایتون و کتابخانههای محبوب مانند Scikit-learn و Pandas تمرین خواهند کرد.
در دوره آموزشی Mastering Machine Learning: From Basics to Advanced با مفاهیم، تکنیکها و کاربردهای یادگیری ماشین آشنا خواهید شد.
این دوره آموزشی، اولین دوره عمومی آموزش دادههای هوش مصنوعی در جهان است. در این دوره فشرده، شرکتکنندگان تمام مهارتها و دانش لازم برای موفقیت در حوزه آموزش دادههای هوش مصنوعی را کسب خواهند کرد؛ حوزهای نوظهور و با رشد سریع که آینده مدلهای هوش مصنوعی و به طور کلی هوش مصنوعی را شکل میدهد. در ابتدا، دوره به طور مختصر به مفاهیم بنیادی هوش مصنوعی که برای درک این حوزه ضروری هستند، مانند یادگیری ماشین، میپردازد. سپس، شرکتکنندگان به تسلط بر ایجاد و ارزیابی دادههای انسانی برای تکنیکهای تنظیم دقیق مدلهای هوش مصنوعی مانند تنظیم دقیق نظارت شده (Supervised fine-tuning) و یادگیری تقویتی از بازخورد انسانی (Reinforcement Learning from Human Feedback) میرسند. پس از تسلط بر این مفاهیم، دوره به بررسی استانداردهای کیفیت و ایمنی دادهها میپردازد که هدایتکننده آموزش پرکاربردترین مدلهای هوش مصنوعی امروزی هستند؛ مدلهایی که به طور پنهانی توسط رهبران صنعت مانند OpenAI و Cohere استفاده میشوند. در نهایت، دوره با آموزش نحوه یافتن اولین شغل به عنوان مربی داده هوش مصنوعی/آموزگار هوش مصنوعی به پایان میرسد. با تکامل مدلهای هوش مصنوعی، تقاضا برای مربیان داده ماهر افزایش مییابد و فرصتهایی برای استقلال مالی و رشد شغلی در سراسر جهان فراهم میآورد.
در دوره آموزشی The Complete AI Data Training Course 2025 با آموزش دادههای هوش مصنوعی آشنا خواهید شد.
زمانی که تیمها با مدلهای یادگیری ماشین کار میکنند، تغییر ویژگیها، مجموعهدادههای مختلف، الگوریتمهای جدید و منابع محاسباتی منحصربهفرد، همگی بر عملکرد یک مدل یادگیری ماشین تأثیر میگذارند. پیگیری تمام این موارد میتواند پیچیده باشد. با ابزارهایی مانند DVC، MLFlow و AWS، میتوان این چالش را برطرف کرد. Milecia McGregor، متخصص نرمافزار با یک دهه تجربه در حوزههای مختلف فناوری، نحوه استفاده از ابزارهای MLOps را برای بهبود یادگیری ماشین و خودکارسازی برخی از مراحل فرآیند نمایش میدهد. Milecia McGregor دارای مدرک کارشناسی ارشد در مهندسی مکانیک و هوافضا است و در زمینه یادگیری ماشین برای رابطهای انسان و کامپیوتر در وسایل نقلیه خودران فعالیت داشته است. او در حوزههای مختلفی از جمله توسعه فرانتاند و بکاند، علم داده، رباتیک، DevOps، امنیت سایبری، واقعیت مجازی و سایر زمینهها کار کرده است. Milecia در پروژههایی مانند Mozilla VPN و برنامههایی که با سیگنالهای مغزی کار میکنند، مشارکت داشته است. او همچنین یک سخنران بینالمللی در جامعه فناوری است و در مورد موضوعات مختلفی در چندین زبان برنامهنویسی سخنرانی میکند. تجربیات گسترده او در حوزههای مختلف فناوری، از جمله تجربه عملی با سیستمهای پیچیده و دادههای حساس، او را به فردی ایدهآل برای آموزش این ابزارها تبدیل کرده است. در این دوره، او دانش عملی خود را به اشتراک میگذارد تا به شرکتکنندگان کمک کند تا چالشهای مدیریت مدلهای یادگیری ماشین را به طور موثرتری حل کنند و فرآیند توسعه و استقرار را بهینهسازی کنند. این دوره بر رویکردهای عملی تمرکز دارد و شرکتکنندگان را با مهارتهای لازم برای پیادهسازی MLOps در پروژههای خود آشنا میکند.
در دوره آموزشی Learn MLOps for Machine Learning با ابزارها و روشهای بهبود و خودکارسازی فرآیندهای یادگیری ماشین آشنا خواهید شد.
این دوره برای یادگیرندگانی طراحی شده است که به دنبال مسیری جدی و ساختاریافته برای ورود به حوزه هوش مصنوعی هستند. فرقی نمیکند پیشزمینه مهندسی، برنامهنویسی، تحلیل داده داشته باشید یا حتی از ابتدا شروع میکنید؛ در این دوره همه چیز به صورت عملی و گام به گام ارائه شده است. آموزش با مفاهیم ریاضی پایه و پایتون مقدماتی آغاز میشود، بنابراین اگر مدتی است از جبر خطی یا احتمال استفاده نکردهاید، جای نگرانی نیست. توضیحات واضحی در مورد ریاضیات پشت الگوریتمها و پیادهسازی آنها با پایتون ارائه میشود که میتوانید مستقیماً آنها را اجرا، تغییر و از آنها یاد بگیرید. شما با کد واقعی کار خواهید کرد، وظایف را به صورت بصری حل خواهید کرد و دلیل کارکرد هر روش را درک خواهید کرد، نه فقط نحوه استفاده از آن را. در این دوره از ترکیب پایتون، PyTorch، جولیا (Julia) و نوتبوکهای Colab در موارد مناسب استفاده میشود. این دوره مفصل، فنی و به گونهای طراحی شده است که اطمینان حاصل شود شما با درکی عمیق از هوش مصنوعی آن را به پایان میرسانید.
در دوره آموزشی Artificial Intelligence Masterclass با مبانی و کاربردهای هوش مصنوعی آشنا خواهید شد.
دوره بروزرسانی شد.
به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوهها و الگوریتمهایی میپردازد که بر اساس آنها رایانهها و سامانهها توانایی تعلٌم و یادگیری پیدا میکنند. هدف یادگیری ماشین این است که کامپیوتر (در کلیترین مفهوم آن) بتواند به تدریج و با افزایش دادهها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. گسترهٔ این وظیفه میتواند از تشخیص خودکار چهره با دیدن چند نمونه از چهرهٔ مورد نظر تا فراگیری شیوهٔ گامبرداری روباتهای دوپا با دریافت سیگنال پاداش و تنبیه باشد. طیف پژوهشهایی که در یادگیری ماشینی میشود گستردهاست. در سوی نظری آن پژوهشگران بر آناند که روشهای یادگیری تازهای به وجود بیاورند و امکانپذیری و کیفیت یادگیری را برای روشهایشان مطالعه کنند و در سوی دیگر عدهای از پژوهشگران سعی میکنند روشهای یادگیری ماشینی را بر مسایل تازهای اعمال کنند. البته این طیف گسسته نیست و پژوهشهای انجامشده دارای مولفههایی از هر دو رویکرد هستند.
در دوره آموزشی Mathematics for Data Science and Machine Learning using R با آموزش ریاضیات برای علوم داده و یادگیری ماشین با زبان آر اشنا خواهید شد.
هوش مصنوعی یا هوش ماشینی (Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان میدهد، گفته میشود. به عبارت دیگر هوش مصنوعی به سیستمهایی گفته میشود که میتوانند واکنشهایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیهسازی فرایندهای تفکری و شیوههای استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوهها و الگوریتمهایی میپردازد که بر اساس آنها رایانهها و سامانهها توانایی تعلٌم و یادگیری پیدا میکنند. هدف یادگیری ماشین این است که کامپیوتر (در کلیترین مفهوم آن) بتواند به تدریج و با افزایش دادهها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. رگرسیون خطی یا تنازل خطی یا وایازی خطی (Linear regression) یکی از روشهای تحلیل رگرسیون است. در رگرسیون خطّی، متغیّر وابسته ترکیب خطیای از ضرایب (پارامترها) است (لازم نیست که نسبت به متغیرهای مستقل خطی باشد).
در دوره آموزشی Linear Regression Analysis in Python for Machine Learning با آموزش آنالیز رگرسیون خطی در پایتون برای یادگیری ماشین اشنا خواهید شد.