دانلود ها ی دارای تگ: "بوستینگ"

1 مورد برای عبارت مورد نظر پیدا شد.

دانلود Applied Machine Learning: Ensemble Learning - آموزش یادگیری ماشین

  • بازدید: 71
دانلود Applied Machine Learning: Ensemble Learning - آموزش یادگیری ماشین

این دوره برای افرادی طراحی شده است که مایلند مهارت‌های خود را به عنوان متخصص یادگیری ماشین ارتقا دهند، اما نمی‌دانند از کجا شروع کنند. برای دستیابی به این هدف، نیازی به آموزش رسمی در علم داده نیست. در طول این دوره، مَت هریسون به عنوان مدرس، شرکت‌کنندگان را با مفاهیم کلیدی یادگیری ترکیبی آشنا می‌کند. در این دوره، روش‌های مختلف یادگیری ترکیبی از جمله بگینگ (Bagging)، بوستینگ (Boosting) و استکینگ (Stacking) بررسی می‌شوند. شرکت‌کنندگان یاد می‌گیرند که چگونه این روش‌ها را با استفاده از کتابخانه‌های محبوب پایتون مانند سایکیت‌لرن (scikit-learn) و ایکس‌جی‌بوست (XGBoost) پیاده‌سازی کنند. در پایان این دوره، شرکت‌کنندگان به مهارت‌های لازم برای پیاده‌سازی و بهینه‌سازی مدل‌های ترکیبی در وظایف واقعی یادگیری ماشین مجهز خواهند شد. این دوره با گیت‌هاب کداسپیسز (GitHub Codespaces) یکپارچه شده است؛ یک محیط توسعه‌دهنده ابری فوری که تمام قابلیت‌های IDE مورد علاقه شما را بدون نیاز به هیچ گونه تنظیمات محلی فراهم می‌کند. با استفاده از گیت‌هاب کداسپیسز، می‌توان در هر زمان و از هر دستگاهی به صورت عملی تمرین کرد – و این در حالی است که از ابزاری استفاده می‌شود که به احتمال زیاد در محیط کار نیز با آن مواجه خواهید شد. برای شروع کار، مطالعه بخش "استفاده از گیت‌هاب کداسپیسز" همراه با این دوره توصیه می‌شود. این دوره به شرکت‌کنندگان کمک می‌کند تا درک عمیقی از یادگیری ترکیبی پیدا کرده و آن را در پروژه‌های خود به کار گیرند، که این امر به بهبود عملکرد مدل‌های یادگیری ماشین و افزایش دقت پیش‌بینی‌ها منجر می‌شود. تأکید این دوره بر جنبه‌های عملی پیاده‌سازی و استفاده از ابزارهای صنعتی است تا شرکت‌کنندگان بتوانند دانش خود را مستقیماً در سناریوهای واقعی به کار گیرند و به متخصصانی کارآمد در زمینه یادگیری ماشین تبدیل شوند.
در دوره آموزشی Applied Machine Learning: Ensemble Learning با پیاده‌سازی و بهینه‌سازی مدل‌های یادگیری ترکیبی آشنا خواهید شد.