دانلود ها ی دارای تگ: "مدلسازی پیشبینی"
4 مورد برای عبارت مورد نظر پیدا شد.
4 مورد برای عبارت مورد نظر پیدا شد.
این دوره برای افرادی طراحی شده است که مایلند مهارتهای خود را به عنوان متخصص یادگیری ماشین ارتقا دهند، اما نمیدانند از کجا شروع کنند. برای دستیابی به این هدف، نیازی به آموزش رسمی در علم داده نیست. در طول این دوره، مَت هریسون به عنوان مدرس، شرکتکنندگان را با مفاهیم کلیدی یادگیری ترکیبی آشنا میکند. در این دوره، روشهای مختلف یادگیری ترکیبی از جمله بگینگ (Bagging)، بوستینگ (Boosting) و استکینگ (Stacking) بررسی میشوند. شرکتکنندگان یاد میگیرند که چگونه این روشها را با استفاده از کتابخانههای محبوب پایتون مانند سایکیتلرن (scikit-learn) و ایکسجیبوست (XGBoost) پیادهسازی کنند. در پایان این دوره، شرکتکنندگان به مهارتهای لازم برای پیادهسازی و بهینهسازی مدلهای ترکیبی در وظایف واقعی یادگیری ماشین مجهز خواهند شد. این دوره با گیتهاب کداسپیسز (GitHub Codespaces) یکپارچه شده است؛ یک محیط توسعهدهنده ابری فوری که تمام قابلیتهای IDE مورد علاقه شما را بدون نیاز به هیچ گونه تنظیمات محلی فراهم میکند. با استفاده از گیتهاب کداسپیسز، میتوان در هر زمان و از هر دستگاهی به صورت عملی تمرین کرد – و این در حالی است که از ابزاری استفاده میشود که به احتمال زیاد در محیط کار نیز با آن مواجه خواهید شد. برای شروع کار، مطالعه بخش "استفاده از گیتهاب کداسپیسز" همراه با این دوره توصیه میشود. این دوره به شرکتکنندگان کمک میکند تا درک عمیقی از یادگیری ترکیبی پیدا کرده و آن را در پروژههای خود به کار گیرند، که این امر به بهبود عملکرد مدلهای یادگیری ماشین و افزایش دقت پیشبینیها منجر میشود. تأکید این دوره بر جنبههای عملی پیادهسازی و استفاده از ابزارهای صنعتی است تا شرکتکنندگان بتوانند دانش خود را مستقیماً در سناریوهای واقعی به کار گیرند و به متخصصانی کارآمد در زمینه یادگیری ماشین تبدیل شوند.
در دوره آموزشی Applied Machine Learning: Ensemble Learning با پیادهسازی و بهینهسازی مدلهای یادگیری ترکیبی آشنا خواهید شد.
این دوره آموزشی جامع، شرکتکنندگان را از مبانی پایتون و آمار به مفاهیم پیشرفته یادگیری ماشین و یادگیری عمیق هدایت میکند. این دوره با پوشش کتابخانههای کلیدی مانند NumPy و Pandas، تجزیه و تحلیل دادهها و تجسم را آموزش میدهد. سپس به بررسی الگوریتمهای یادگیری نظارت شده و بدون نظارت، شبکههای عصبی، CNNها و RNNها میپردازد. شرکتکنندگان همچنین با پردازش زبان طبیعی و تکنیکهای استقرار مدل آشنا خواهند شد و از طریق پروژههای عملی، تجربه عملی کسب خواهند کرد. هدف این دوره تربیت متخصصان آماده برای صنعت در زمینه علم داده و هوش مصنوعی است. علاوه بر این، این دوره بر استقرار مدل و مهندسی MLOps تمرکز دارد و به شرکتکنندگان مهارتهای عملی برای استقرار مدلهای یادگیری ماشین در محیطهای تولید و مدیریت چرخه عمر آنها را آموزش میدهد. از طریق پروژههای عملی در دنیای واقعی، شرکتکنندگان دانش و مهارتهای خود را برای حل مشکلات پیچیده داده محور به کار میگیرند و یک نمونه کار قوی برای نشان دادن تواناییهای خود ایجاد میکنند.
در دوره آموزشی Mastering Data Science & AI with Python & Real-World Project با مفاهیم و تکنیک های علم داده و هوش مصنوعی آشنا خواهید شد.
این دوره آموزشی به شما کمک می کند تا با استفاده از پایتون، پروژه های عملی در زمینه هوش مصنوعی، شامل Machine Learning و Deep Learning، را انجام دهید. شما با datasets معروف آشنا خواهید شد و نحوه استفاده از کتابخانه های Scikit-Learn، Tensorflow و Keras را برای حل مسائل دنیای واقعی یاد خواهید گرفت. این دوره برای افرادی مناسب است که دانش پایه ای پایتون دارند و می خواهند مهارت های خود را در هوش مصنوعی ارتقا دهند.
در دوره آموزشی Artificial Intelligence Projects with Python با پروژه های هوش مصنوعی آشنا می شوید.
هوش مصنوعی یا هوش ماشینی (Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان میدهد، گفته میشود. به عبارت دیگر هوش مصنوعی به سیستمهایی گفته میشود که میتوانند واکنشهایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیهسازی فرایندهای تفکری و شیوههای استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. به عنوان یکی از شاخههای وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشینی (Machine learning) به تنظیم و اکتشاف شیوهها و الگوریتمهایی میپردازد که بر اساس آنها رایانهها و سامانهها توانایی تعلٌم و یادگیری پیدا میکنند. هدف یادگیری ماشین این است که کامپیوتر (در کلیترین مفهوم آن) بتواند به تدریج و با افزایش دادهها کارایی بهتری در انجام وظیفهٔ مورد نظر پیدا کند. رگرسیون خطی یا تنازل خطی یا وایازی خطی (Linear regression) یکی از روشهای تحلیل رگرسیون است. در رگرسیون خطّی، متغیّر وابسته ترکیب خطیای از ضرایب (پارامترها) است (لازم نیست که نسبت به متغیرهای مستقل خطی باشد).
در دوره آموزشی Linear Regression Analysis in Python for Machine Learning با آموزش آنالیز رگرسیون خطی در پایتون برای یادگیری ماشین اشنا خواهید شد.