دانلود ها ی دارای تگ: "پایگاه داده برداری"
3 مورد برای عبارت مورد نظر پیدا شد.
3 مورد برای عبارت مورد نظر پیدا شد.
در سال ۲۰۲۶، دنیای فناوری از مرحله ساخت پوستههای ساده برای مدلهای زبانی بزرگ عبور کرده است. امروزه صرفاً اتصال به یک مدل هوش مصنوعی کافی نیست؛ بلکه بازار کار به دنبال متخصصانی است که بتوانند اپلیکیشنهایی هوشمند، قابل اتکا و پیچیده ایجاد کنند. این دوره آموزشی با هدف پر کردن این شکاف مهارتی طراحی شده و به شرکتکنندگان کمک میکند تا از سطح مبتدی به یک مهندس ارشد هوش مصنوعی ارتقا یابند. تمرکز اصلی این آموزش بر سه ستون اصلی اکوسیستم یعنی LangChain، LangGraph و LangSmith است که زیربنای برنامههای پیشرفته امروزی را تشکیل میدهند.
در بخش نخست، یادگیرندگان با چارچوب LangChain آشنا میشوند. این بخش فراتر از فراخوانیهای ساده API میرود و بر استفاده از زبان بیان لنگچین (LCEL) تمرکز دارد. این زبان به توسعهدهندگان اجازه میدهد تا زنجیرههای پیچیدهای از دادهها و مدلها را به صورت کاملاً ماژولار و بهینه به یکدیگر متصل کنند. در ادامه، دوره به سراغ مبحث حیاتی «حافظه» و «حالت» در اپلیکیشنها میرود. با استفاده از LangGraph، دانشجویان یاد میگیرند که چگونه عاملهای هوشمند (Agents) بسازند که برخلاف برنامههای خطی ساده، دارای چرخه و منطق تصمیمگیری هستند. این مهارت برای ساخت سیستمهایی که نیاز به استدلال و اصلاح اشتباهات خود دارند، بسیار ضروری است.
در دوره آموزشی The Complete LangChain, LangGraph, & LangSmith Course (2026) با مفاهیم پیشرفته و کاربردی اکوسیستم لنگچین برای ساخت اپلیکیشنهای هوشمند آشنا خواهید شد.
این دوره آموزشی به عنوان یک راهنمای کامل و پروژهمحور طراحی شده است تا شرکتکنندگان را با دنیای پیشرفته خودکارسازی (Automation) و عاملهای هوشمند (AI Agents) آشنا کند. در طول این مسیر آموزشی، یادگیرندگان با تکنیکهای عملی برای خودکارسازی وظایف تکراری و خستهکننده با استفاده از قدرت هوش مصنوعی آشنا میشوند. هدف اصلی این دوره، ایجاد توانمندی در افراد برای ساخت انواع مختلفی از عاملهای هوش مصنوعی است که میتوانند به صورت مستقل یا نیمهمستقل وظایف پیچیده را مدیریت کنند.
یکی از ویژگیهای برجسته این برنامه آموزشی، تمرکز بر مفاهیم فنی و مدرنی نظیر پایگاههای داده برداری (Vector Databases) و پروتکل زمینه مدل (Model Context Protocol - MCP) است. شرکتکنندگان یاد میگیرند که چگونه مدلهای هوش مصنوعی خود را به پایگاههای داده متصل کنند تا امکان ذخیرهسازی دانش به صورت بلندمدت فراهم شود. این ترکیبِ هوشمندانه میان خودکارسازی و ساخت عاملها، فرصتی استثنایی را برای تمرین مهارتهای هوش مصنوعی فراهم میآورد و همزمان دانش فنی افراد را در زمینهی مدلهای زبانی بزرگ (LLMs) و مهندسی پرامپت (Prompt Engineering) به شکل قابل توجهی ارتقا میدهد.
در دوره آموزشی AI Automation Workflow, AI Voice Agent, Vector Database, MCP با مفاهیم و ابزارهای پیشرفته خودکارسازی فرآیندها و مدیریت عاملهای هوشمند آشنا خواهید شد.
این دوره جامع، شرکتکنندگان را از اصول اولیه MongoDB به سمت پایگاههای داده وکتور پیشرفته مبتنی بر هوش مصنوعی هدایت میکند. این دوره برای افراد مبتدی و علاقهمندانی که میخواهند تکنیکهای پایگاه داده مدرن و ادغام هوش مصنوعی را فرا بگیرند، بسیار مناسب است. در طول دوره، شرکتکنندگان با ابزارهای مختلفی از جمله MongoDB Shell، Compass، PyMongo، و MongoDB Atlas کار خواهند کرد و با مفاهیم پایگاه داده وکتور، جستجوهای متنی، و تکنیکهای پیشرفتهای مانند Pipeline Aggregation آشنا میشوند. آنها همچنین به صورت عملی با LangChain و OpenAI LLMs کار میکنند تا یاد بگیرند چگونه متن تولید کرده و از OpenAI Embeddings استفاده کنند. این دوره به صورت عملی طراحی شده و با ارائه منابعی مانند نوتبوکهای کامل ژوپیتر، دیتاستهای نمونه، فایلهای پیکربندی، و کدهای شروع، یادگیری را تسهیل میکند. تمرینهای عملی و راهحلهای مربوط به آنها نیز ارائه شده است تا شرکتکنندگان بتوانند مهارتهای خود را تقویت کنند. یکی از بخشهای کلیدی این دوره، آموزش ساخت سیستمهای RAG (تولید مبتنی بر بازیابی) است که در آنها پایگاههای داده سنتی با فناوریهای هوش مصنوعی در MongoDB Atlas ترکیب میشوند. به طور کلی، این دوره به شرکتکنندگان کمک میکند تا مهارتهای لازم برای کار با پایگاههای داده مدرن و فناوریهای هوش مصنوعی مرتبط را کسب کنند.
در دوره آموزشی MongoDB Atlas Vector Database: Zero to Advanced with Python با پایگاه داده MongoDB و تکنیکهای پیشرفته آن، از جمله پایگاه داده وکتور، و همچنین ادغام آن با هوش مصنوعی و ابزارهای مرتبط آشنا خواهید شد.