دانلود ها ی دارای تگ: "bigdata"

53 مورد برای عبارت مورد نظر پیدا شد.

دانلود Big Data Analysis with Apache Spark PySpark: Hands on Python - آموزش آنالیز داده های حجیم با پای اسپارک

  • بازدید: 6,946
دانلود Big Data Analysis with Apache Spark PySpark: Hands on Python - آموزش آنالیز داده های حجیم با

 Apache Spark ، یک چارچوب محاسباتی برای داده ­های عظیم است. Spark از MapReduce به عنوان موتور اجرای خود، استفاده نمی­ کند اما بخوبی با هادوپ یکپارچه است. در واقع Spark می­تواند در Yarn اجرا شود و با فرمت داده­ای هادوپ و HDFS کار کند. Spark بیشتر بخاطر توانایی نگهداشتن مجموعه ­داده ه­ای بین کارها، در حافظه، شناخته می­ شود. این قابلیت Spark سبب می­ شود تا سریعتر از جریان کاری MapReduce معادل که مجموعه­ داده­ های همیشه از دیسک بار می­ شوند، عمل کند. دو نوع کاربردی که از مدل پردازشی Spark بهره می­ برند، الگوریتم ­های تکرار شونده (که یک تابع بر روی مجموعه داده­ای به‌صورت تکراری تا حصول شرط خروج، اعمال می­گردد، و تحلیل تعاملی(که یک کاربر مجموعه ای از پرس و جوهای اکتشافی تک کاره را بر روی مجموعه ای داده­ ها، اعمال می­ کنند) است. همچنین اسپارک APIهایی در زبان­های Java، Scala و Python، ارایه می ­کند. پروژه Apache Spark شامل ماژول ­های یادگیری ماشین(MLlib)، پردازش گراف (GraphX)، پردازش جریانی( (Spark Streaming)، و SQL (Spark SQL است.
در دوره آموزشی Big Data Analysis with Apache Spark PySpark: Hands on Python با آموزش آنالیز داده های حجیم با پای اسپارک اشنا خواهید شد.

دانلود Working with Big Data LiveLessons (Video Training): Infrastructure, Algorithms, and Visualizations - آموزش کار با داده های حجیم: زیرساخت، الگوریتم ها و تجسم ها

  • بازدید: 5,322
دانلود Working with Big Data LiveLessons (Video Training): Infrastructure, Algorithms, and Visualiza
با ورود به عصر اطلاعات و ارتباطات و آغاز استفاده از داده ها و اطلاعات به عنوان سرمایه های اصلی در حرکت علمی، اقتصادی، اجتماعی و فرهنگی جوامع، سازمان ها و شرکت های مختلف و توسعه مشارکت افراد در جهان اینترنت و ارتباطات شبکه ای در دنیا، دغدغه ای بروز پیدا کرد که از جنس همین داده هایی بود که همه روز و با سرعت وحشتناک در دنیا و در عرصه های مختلفی که فناوری اطلاعات ورود پیدا کرده بود، تولید می شود و آن اینکه چگونه این حجم بزرگ و متنوع داده ها و اطلاعات را با توجه به ساختار هایی که در فضای فناوری اطلاعات وجود دارد، می توان مدیریت، کنترل و پردازش کرد و از آن در جهت بهبود ساختارها و سودآوری بیشتر بهره جست؟
از سال 2012 به بعد در هر روز هزار پتابایت (1000 Pebibyte) داده تولید می شود که به دنبال خود مستلزم ذخیره سازی، تحلیل، جستجوها، تمیزکاری داده ها، اشتراک ها و... در داده هاست که باید در حوزه مختلف انجام شود. داده های بزرگ معمولا به مجمعه از داده ها اطلاق می شود که اندازه آنها فراتر از حدی است که با نرم افزارهای معمول بتوان آنها را در یک زمان معقول اخذ، دقیق سازی، مدیریت و پردازش کرد (Snijders, 2012). مفهوم «اندازه» در داده های بزرگ بطور مستمر در حال تغییر است و به مرور بزرگتر می شود. داده های بزرگ مجموعه از تکنیک ها و تاکتیک هایی است که نیازمند شکل جدیدی از یکپارچگی هستند تا بتوانند ارزش های بزرگی را که در مجموعه های بزرگ، وسیع، پیچیده و متنوع داده پنهان شده اند، آشکار سازند.
در دوره Livelessons Working with Big Data LiveLessons (Video Training): Infrastructure, Algorithms, and Visualizations با آموزش کار با داده های حجیم، زیرساخت، الگوریتم ها و تجسم ها آشنا می شوید.

دانلود Udemy Hands on Big Data with Apache Hadoop, Python and HDInsight - آموزش کار با داده های عظیم با آپاچی هادوپ، پایتون و اچ دی اینسایت

  • بازدید: 5,057
دانلود Udemy Hands on Big Data with Apache Hadoop, Python and HDInsight - آموزش کار با داده های عظیم
 داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند. هادوپ یک نرم افزار کد باز (Open source) است که برای تقسیم بندی و توزیع فایل های متمرکز به کار می رود. هادوپ تحت لیسانس آپاچی (Apache) ارائه می شود و توسط جاوا برنامه نویسی شده است. امّا هادوپ چگونه به وجود آمد؟ شرکت گوگل در پی افزایش حجم تبادل اطلاعات، به دنبال راه حلّی برای افزایش سرعت و راندمان سرورهای خود بود که سیستم توزیع (Distribution) منحصر به فردی برای خود ابداع کرد به نام GFS که مخفف Google File System بود. در پی این موفقیت، انجمن توزیع Apache به فکر گسترش این تکنولوژی در سطح وسیع تری افتاد و سیستم هادوپ به وجود آمد. هادوپ یک فریم ورک یا مجموعه ای از نرم افزارها و کتابخانه هایی است که ساز و کار پردازش حجم عظیمی از داده های توزیع شده را فراهم می کند. در واقع Hadoop را می توان به یک سیستم عامل تشبیه کرد که طراحی شده تا بتواند حجم زیادی از داده ها را بر روی ماشین های مختلف پردازش و مدیریت کند.
در دوره آموزشی Udemy Hands on Big Data with Apache Hadoop, Python and HDInsight با آموزش کار با داده های عظیم با آپاچی هادوپ، پایتون و اچ دی اینسایت آشنا می شوید.

دانلود Packt Hands-On PySpark for Big Data Analysis - آموزش مقدماتی پای اسپارک برای آنالیز داده های حجیم

  • بازدید: 4,458
دانلود Packt Hands-On PySpark for Big Data Analysis - آموزش مقدماتی پای اسپارک برای آنالیز داده های
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند.
در دوره آموزشی Packt Hands-On PySpark for Big Data Analysis با آموزش مقدماتی پای اسپارک برای آنالیز داده های حجیم آشنا می شوید.

دانلود Udemy Bigdata and Hadoop [Scalebyte] - آموزش کار با هادوپ و داده های حجیم

  • بازدید: 6,150
دانلود Udemy Bigdata and Hadoop [Scalebyte] - آموزش کار با هادوپ و داده های حجیم
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند. هادوپ یک نرم افزار کد باز (Open source) است که برای تقسیم بندی و توزیع فایل های متمرکز به کار می رود. هادوپ تحت لیسانس آپاچی (Apache) ارائه می شود و توسط جاوا برنامه نویسی شده است. امّا هادوپ چگونه به وجود آمد؟ شرکت گوگل در پی افزایش حجم تبادل اطلاعات، به دنبال راه حلّی برای افزایش سرعت و راندمان سرورهای خود بود که سیستم توزیع (Distribution) منحصر به فردی برای خود ابداع کرد به نام GFS که مخفف Google File System بود. در پی این موفقیت، انجمن توزیع Apache به فکر گسترش این تکنولوژی در سطح وسیع تری افتاد و سیستم هادوپ به وجود آمد. هادوپ یک فریم ورک یا مجموعه ای از نرم افزارها و کتابخانه هایی است که ساز و کار پردازش حجم عظیمی از داده های توزیع شده را فراهم می کند. در واقع Hadoop را می توان به یک سیستم عامل تشبیه کرد که طراحی شده تا بتواند حجم زیادی از داده ها را بر روی ماشین های مختلف پردازش و مدیریت کند.
در دوره آموزشی Udemy Bigdata and Hadoop [Scalebyte] با هادوپ و داده های حجیم آشنا می شوید.

دانلود O'Reilly Legal Landscape for Big Data - آموزش چشم انداز حقوقی برای داده های بزرگ

  • بازدید: 8,355
دانلود O'Reilly Legal Landscape for Big Data - آموزش چشم انداز حقوقی برای داده های بزرگ
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند.
در دوره آموزشی O'Reilly Legal Landscape for Big Data با چشم انداز حقوقی برای داده های بزرگ آشنا می شوید.  

دانلود Big Data Testing: 150+ Interview Questions and Answers - آموزش تست داده های حجیم: همراه با 150 پرسش و پاسخ

  • بازدید: 9,603
دانلود Big Data Testing: 150+ Interview Questions and Answers - آموزش تست داده های حجیم: همراه با 15
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند.
در دوره آموزشی Udemy Big Data Testing: 150+ Interview Questions and Answers با نحوه تجزیه و تحلیل داده های حجیم و تست آنها با ابزارهای مختلف آشنا می شوید. 

دانلود Packt Learning Path: Big Data Analytics - آموزش آنالیز داده های حجیم

  • بازدید: 9,637
دانلود Packt Learning Path: Big Data Analytics - آموزش آنالیز داده های حجیم
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند.
در دوره آموزشی Packt Learning Path Big Data Analytics با نحوه تجزیه و تحلیل داده های حجیم با استفاده از هادوپ و آپاچی اسپارک 2 آشنا می شوید.

دانلود Packt Taming Big Data with Apache Spark and Python - آموزش کار با داده های حجیم بوسیله آپاچی اسپارک و پایتون

  • بازدید: 22,154
دانلود Packt Taming Big Data with Apache Spark and Python - آموزش کار با داده های حجیم بوسیله آپاچی
داده‌ های عظیم، ابر داده، بزرگ‌داده یا داده‌ های بزرگ (Big Data) اصطلاحی است که به مجموعه داده‌ هایی اطلاق می‌شود که مدیریت، کنترل و پردازش آنها فراتر از توانایی ابزارهای نرم‌افزاری در یک زمان قابل تحمل و مورد انتظار است. مقیاس بزرگ‌ داده، به طور مداوم در حال رشد از محدوده چند ۱۰ ترابایت به چندین پتابایت، در یک مجموعه داده واحد است. نـمونه‌هایی از بزرگ‌ داده، گــزارش‌ های وبی، سامانه‌ های بازشناسی با امواج رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متون و اسناد اینترنتی، نمایه‌های جستجوهای اینترنتی، نجوم، مدارک پزشکی، آرشیو عکس، آرشیو ویدیو، پژوهش‌های زمین‌شناسی و تجارت در مقیاس بزرگ هستند. آپاچی اسپارک فعال ترین و بهترین پروژه آپاچی است که برای آنالیز داده های حجیم به کار می رود.
در دوره آموزشی Packt Taming Big Data with Apache Spark and Python با اصول و موارد اساسی کار با داده های حجیم و آپاچی اسپارک آشنا می شوید.

دانلود Udemy Setup Big Data Development Environment - آموزش نصب محیط های توسعه داده بزرگ

  • بازدید: 12,985
دانلود Udemy Setup Big Data Development Environment - آموزش نصب محیط های توسعه داده بزرگ
با ورود به عصر اطلاعات و ارتباطات و آغاز استفاده از داده ها و اطلاعات به عنوان سرمایه های اصلی در حرکت علمی، اقتصادی، اجتماعی و فرهنگی جوامع، سازمان ها و شرکت های مختلف و توسعه مشارکت افراد در جهان اینترنت و ارتباطات شبکه ای در دنیا، دغدغه ای بروز پیدا کرد که از جنس همین داده هایی بود که همه روز و با سرعت وحشتناک در دنیا و در عرصه های مختلفی که فناوری اطلاعات ورود پیدا کرده بود، تولید می شود و آن اینکه چگونه این حجم بزرگ و متنوع داده ها و اطلاعات را با توجه به ساختار هایی که در فضای فناوری اطلاعات وجود دارد، می توان مدیریت، کنترل و پردازش کرد و از آن در جهت بهبود ساختارها و سودآوری بیشتر بهره جست؟
از سال 2012 به بعد در هر روز هزار پتابایت (1000 Pebibyte) داده تولید می شود که به دنبال خود مستلزم ذخیره سازی، تحلیل، جستجوها، تمیزکاری داده ها، اشتراک ها و... در داده هاست که باید در حوزه مختلف انجام شود. داده های بزرگ معمولا به مجمعه از داده ها اطلاق می شود که اندازه آنها فراتر از حدی است که با نرم افزارهای معمول بتوان آنها را در یک زمان معقول اخذ، دقیق سازی، مدیریت و پردازش کرد (Snijders, 2012). مفهوم «اندازه» در داده های بزرگ بطور مستمر در حال تغییر است و به مرور بزرگتر می شود. داده های بزرگ مجموعه از تکنیک ها و تاکتیک هایی است که نیازمند شکل جدیدی از یکپارچگی هستند تا بتوانند ارزش های بزرگی را که در مجموعه های بزرگ، وسیع، پیچیده و متنوع داده پنهان شده اند، آشکار سازند.
در دوره آموزشی Udemy Setup Big Data Development Environment با محیط ها و تکنولوژی های مختلفی مانند Hadoop, Spark, Hive, Pig, Sqoop و... آشنا می شوید.