دانلود ها ی دارای تگ: "data analysis"
83 مورد برای عبارت مورد نظر پیدا شد.
83 مورد برای عبارت مورد نظر پیدا شد.
دوره بروزرسانی شد.
پایتون (Python) یک زبان برنامهنویسی همه منظوره، سطح بالا، شیءگرا و مفسر است که فلسفه ایجاد آن تاکید بر دو هدف اصلی خوانایی بالای برنامههای نوشته شده و کوتاهی و بازدهی نسبی بالای آن است. کلمات کلیدی و اصلی این زبان به صورت حداقلی تهیه شدهاند و در مقابل کتابخانههایی که در اختیار کاربر است بسیار وسیع هستند. یک کار غیر معمول که در طراحی این زبان انجام گرفته استفاده از فاصله و جلوبردن متن برنامه برای مشخص کردن بلوکهای مختلف کد است. پایتون مدلهای مختلف برنامه نویسی (از جمله شیء گرا و برنامه نویسی دستوری و تابع محور) را پشتیبانی میکند و برای مشخص کردن نوع متغییرها از یک سامانه پویا استفاده میکند. زبان پایتون به دلیل سادگی ,قدرت و مودالهای کامل آن مورد توجه خیلی از سازمانها مانند گوگل، یاهو و IBM قرار گرفته است.
در دوره آموزشی Data Science with Python Certification Course با آموزش مدرک پایتون برای علوم داده اشنا خواهید شد.
Apache Spark ، یک چارچوب محاسباتی برای داده های عظیم است. Spark از MapReduce به عنوان موتور اجرای خود، استفاده نمی کند اما بخوبی با هادوپ یکپارچه است. در واقع Spark میتواند در Yarn اجرا شود و با فرمت دادهای هادوپ و HDFS کار کند. Spark بیشتر بخاطر توانایی نگهداشتن مجموعه داده های بین کارها، در حافظه، شناخته می شود. این قابلیت Spark سبب می شود تا سریعتر از جریان کاری MapReduce معادل که مجموعه داده های همیشه از دیسک بار می شوند، عمل کند. دو نوع کاربردی که از مدل پردازشی Spark بهره می برند، الگوریتم های تکرار شونده (که یک تابع بر روی مجموعه دادهای بهصورت تکراری تا حصول شرط خروج، اعمال میگردد، و تحلیل تعاملی(که یک کاربر مجموعه ای از پرس و جوهای اکتشافی تک کاره را بر روی مجموعه ای داده ها، اعمال می کنند) است. همچنین اسپارک APIهایی در زبانهای Java، Scala و Python، ارایه می کند. پروژه Apache Spark شامل ماژول های یادگیری ماشین(MLlib)، پردازش گراف (GraphX)، پردازش جریانی( (Spark Streaming)، و SQL (Spark SQL است.
در دوره آموزشی Big Data Analysis with Apache Spark PySpark: Hands on Python با آموزش آنالیز داده های حجیم با پای اسپارک اشنا خواهید شد.
علم داده (Data Science)، دانشی میانرشتهای پیرامون استخراج دانش و آگاهی از مجموعهای داده و اطلاعات است. علم داده از ترکیب مباحث مختلفی به وجود آمده و بر مبانی و روشهای موجود در حوزههای مختلف علمی بنا شدهاست. تعدادی از این حوزهها عبارتند از: ریاضیات، آمار، مهندسی داده، بازشناخت الگو و... هدف این علم، استخراج مفهوم از داده و تولید محصولات دادهمحور است.
آقایان توماس دونپورت و دی جی پاتیل در سال ۲۰۱۲ در مقاله «علم داده: جذابترین شغل قرن بیست و یکم» متخصصین علم داده را این طور تعریف میکنند: کسانی که میدانند چگونه میتوان از انبوه اطلاعات بدون ساختار پاسخ سوالهای کسبوکار را پیدا کرد. استنتون در سال ۲۰۱۳ علم داده را این طور تعریف میکند: علم داده رشته در حال ظهوری است که به جمعآوری، آمادهسازی، تحلیل، بصریسازی، مدیریت و نگهداشت اطلاعات در حجم بالا میپردازد. دریسکول در سال ۲۰۱۴ علم داده را این طور تعریف میکند: علم داده مهندسی عمران دادههاست. متخصص علم داده دانشی کاربردی از دادهها و ابزارها دارد به علاوه درک تئوریکی دارد که مشخص میکند چه چیزی از نظر علمی ممکن است. به شاغلین در حوزهٔ علم داده، متخصص علم داده (data scientist) میگویند.
در دوره آموزشی Python Data Science basics with Numpy, Pandas and Matplotlib با آموزش مقدماتی علوم داده با پایتون، نام پای، پانداس و مت پلات لایب اشنا خواهید شد.