دانلود ها ی دارای تگ: "آموزش ماشین"
3 مورد برای عبارت مورد نظر پیدا شد.
3 مورد برای عبارت مورد نظر پیدا شد.
این دوره برای افرادی طراحی شده است که مایلند مهارتهای خود را به عنوان متخصص یادگیری ماشین ارتقا دهند، اما نمیدانند از کجا شروع کنند. برای دستیابی به این هدف، نیازی به آموزش رسمی در علم داده نیست. در طول این دوره، مَت هریسون به عنوان مدرس، شرکتکنندگان را با مفاهیم کلیدی یادگیری ترکیبی آشنا میکند. در این دوره، روشهای مختلف یادگیری ترکیبی از جمله بگینگ (Bagging)، بوستینگ (Boosting) و استکینگ (Stacking) بررسی میشوند. شرکتکنندگان یاد میگیرند که چگونه این روشها را با استفاده از کتابخانههای محبوب پایتون مانند سایکیتلرن (scikit-learn) و ایکسجیبوست (XGBoost) پیادهسازی کنند. در پایان این دوره، شرکتکنندگان به مهارتهای لازم برای پیادهسازی و بهینهسازی مدلهای ترکیبی در وظایف واقعی یادگیری ماشین مجهز خواهند شد. این دوره با گیتهاب کداسپیسز (GitHub Codespaces) یکپارچه شده است؛ یک محیط توسعهدهنده ابری فوری که تمام قابلیتهای IDE مورد علاقه شما را بدون نیاز به هیچ گونه تنظیمات محلی فراهم میکند. با استفاده از گیتهاب کداسپیسز، میتوان در هر زمان و از هر دستگاهی به صورت عملی تمرین کرد – و این در حالی است که از ابزاری استفاده میشود که به احتمال زیاد در محیط کار نیز با آن مواجه خواهید شد. برای شروع کار، مطالعه بخش "استفاده از گیتهاب کداسپیسز" همراه با این دوره توصیه میشود. این دوره به شرکتکنندگان کمک میکند تا درک عمیقی از یادگیری ترکیبی پیدا کرده و آن را در پروژههای خود به کار گیرند، که این امر به بهبود عملکرد مدلهای یادگیری ماشین و افزایش دقت پیشبینیها منجر میشود. تأکید این دوره بر جنبههای عملی پیادهسازی و استفاده از ابزارهای صنعتی است تا شرکتکنندگان بتوانند دانش خود را مستقیماً در سناریوهای واقعی به کار گیرند و به متخصصانی کارآمد در زمینه یادگیری ماشین تبدیل شوند.
در دوره آموزشی Applied Machine Learning: Ensemble Learning با پیادهسازی و بهینهسازی مدلهای یادگیری ترکیبی آشنا خواهید شد.
این دوره آموزشی به معرفی مفاهیم و تکنیکهای کلیدی یادگیری ماشین میپردازد و نحوه پیادهسازی آنها با استفاده از زبان برنامهنویسی R، مجموعه ابزارهای tidyverse و بسته mlr را آموزش میدهد. شرکتکنندگان در این دوره با روشهای مختلف پیشپردازش دادهها، انتخاب ویژگی، ساخت و ارزیابی مدلهای یادگیری ماشین برای مسائل طبقهبندی و رگرسیون آشنا خواهند شد. همچنین، نحوه استفاده از ابزارهای بصریسازی دادهها برای درک بهتر نتایج مدلها و ارائه آنها به مخاطبان غیرمتخصص مورد بررسی قرار میگیرد. این دوره برای افرادی که به دنبال کسب مهارتهای عملی در زمینه یادگیری ماشین و استفاده از R برای تحلیل دادههای پیچیده هستند، طراحی شده است. با گذراندن این دوره، شرکتکنندگان قادر خواهند بود تا با استفاده از ابزارهای قدرتمند R، مسائل واقعی دنیای کسبوکار را با رویکردهای یادگیری ماشین حل کنند.
در دوره آموزشی Machine Learning with R, the tidyverse, and mlr. Video Edition با مفاهیم و ابزارهای یادگیری ماشین در محیط R آشنا خواهید شد.
در این دوره، شما با اصول بنیادی یادگیری ماشین، از جمله یادگیری با ناظر و بدون ناظر، آشنا خواهید شد. همچنین، کتابخانههای ضروری پایتون مانند NumPy، Pandas و Scikit-learn را برای تحلیل دادهها فرا خواهید گرفت. با پیادهسازی مدلهای رگرسیون و طبقهبندی، توانایی پیشبینی را کسب خواهید کرد. علاوه بر این، تکنیکهای یادگیری گروهی مانند Random Forest و Gradient Boosting را کاوش خواهید کرد.
در دوره Complete Machine Learning & Artificial Intelligence Bootcamp، شما قادر خواهید بود برنامه های مبتنی بر هوش مصنوعی بسازید، مفاهیم پیچیده یادگیری ماشین را درک کنید و از تکنیک های هوش مصنوعی برای حل مشکلات دنیای واقعی استفاده کنید.