دانلود ها ی دارای تگ: "علم داده"
111 مورد برای عبارت مورد نظر پیدا شد.
111 مورد برای عبارت مورد نظر پیدا شد.
این دوره شرکتکنندگان را از مبانی YOLO11 تا پیشرفتهترین کاربردهای هوش بصری (بینایی کامپیوتر) هدایت میکند. در این مسیر، آشکارسازی شیء (Object Detection)، تقطیع (Segmentation)، تخمین وضعیت (Pose Estimation) و دستهبندی تصاویر (Image Classification) توسط شرکتکنندگان مورد بررسی عمیق قرار میگیرد. همچنین، فراگیران یاد میگیرند چگونه با استفاده از YOLO11 نمودارهای تحلیلی ایجاد کرده و جابجایی اشیا را ردیابی کنند. فراتر از آموزش YOLO11، این دوره پروژههای کاربردی و واقعی را با استفاده از Streamlit برای ساخت رابط کاربری، افزایش دقت آشکارسازی با SAHI برای اشیاء کوچک، تخمین فاصله با Depth Pro، و کاوش در مدلهای پیشرفته هوش مصنوعی چندوجهی مانند Qwen2.5-VL، Florence 2 و Google Gemini 2.5 را شامل میشود. مدلهایی که قابلیتهای Zero-Shot Object Detection، تولید شرح تصویر (Image Captioning)، استدلال (Reasoning) و شناسایی نوری کاراکتر (OCR) را به ارمغان میآورند. در پایان این دوره، شرکتکنندگان تجربه عملی گستردهای با ابزارهای نوین کسب میکنند تا بتوانند چالشهای کاربردی هوش بصری را به طور مؤثر حل نمایند. تمرکز بر بهروزرسانیها و قابلیتهای جدید YOLO11، پیادهسازی عملی در Google Colab، شمارش ورودی و خروجی اشیاء با استفاده از DeepSORT، و ساخت اپلیکیشنهای تعاملی با Streamlit، تضمینکننده یک یادگیری جامع و کاربردی است. این آموزش با هدف توانمندسازی فراگیران برای بهکارگیری تکنیکهای پیشرفته در پروژههای صنعتی و تحقیقاتی طراحی شده است.
در دوره آموزشی Complete Computer Vision Bootcamp: YOLO to Multimodal AI با ابزارها و مدلهای پیشرفته هوش بصری و چندوجهی مانند YOLO11، DeepSORT، SAHI، Depth Pro، Qwen2.5-VL، Florence 2 و Google Gemini 2.5 آشنا خواهید شد.
این دوره دروازهای است برای ورود به دنیای یادگیری ماشین و به کارگیری مفاهیم آن، بدون نوشتن حتی یک خط کد. این آموزش هم برای افراد مبتدی و هم برای متخصصانی طراحی شده است که از کدنویسیهای پیچیده دوری میکنند. شرکتکنندگان از طریق ترکیبی پویا از درسگفتارها و نمایشهای عملی، هم تئوری و هم کاربردهای عملی یادگیری ماشین را کاوش خواهند کرد. در این بخش، درک کاملی از اصول اولیه یادگیری ماشین به دست میآید که شامل مرور کلی یادگیری عمیق، تفاوتهای بین یادگیری ماشین (ML) و یادگیری عمیق (DL)، و اجزای کلیدی محرک این فناوریها است. همچنین، تفاوتهای ظریف بین سیستمهای مبتنی بر قانون و سیستمهای مبتنی بر داده بررسی میشود و شرکتکنندگان نحوه تعریف مؤثر مسائل و جمعآوری داده را خواهند آموخت. تکنیکهای ضروری پیشپردازش داده مانند نرمالسازی، استانداردسازی و مهندسی ویژگی آموزش داده میشود. سپس، با استفاده از پلتفرمهایی مانند کگل (Kaggle) و دیتایکو (Dataiku)، نمایشهای عملی از کاربردهای دنیای واقعی ارائه میشود؛ از جمله ساخت و آموزش مدل تا تکنیکهای ارزیابی شامل ماتریسهای سردرگمی، منحنیهای ROC و موارد دیگر.
در دوره آموزشی No-Code AI & ML: From Data to Deployment Without Coding با کاربرد یادگیری ماشین در پلتفرمهای بدون کد آشنا خواهید شد.
این دوره به طور خاص برای علاقهمندان به حوزه یادگیری ماشین طراحی شده است. این برنامه آموزشی توسط یک دانشمند داده و یک متخصص یادگیری ماشین طراحی شده تا دانش و تجربیات آنها به شیوهای ساده و قابل فهم به شرکتکنندگان منتقل شود. هدف از این دوره کمک به یادگیری نظریههای پیچیده، الگوریتمها و کتابخانههای برنامهنویسی به شیوهای آسان است. در این دوره، دانشجو گام به گام به دنیای یادگیری ماشین هدایت میشود. با گذراندن هر بخش آموزشی، شرکتکنندگان مهارتهای جدیدی کسب کرده و درک خود را از این زیرشاخه چالشبرانگیز و در عین حال سودآور علم داده، ارتقا میدهند. این دوره به گونهای انعطافپذیر طراحی شده که میتوان آن را با تمرکز بر آموزشهای پایتون، آموزشهای R، یا ترکیب هر دو زبان برنامهنویسی پایتون و R به پایان رساند. شرکتکننده میتواند زبان برنامهنویسی مورد نیاز برای مسیر شغلی خود را انتخاب نماید. این دوره همزمان که جذاب و هیجانانگیز است، عمیقاً به مباحث یادگیری ماشین میپردازد.
در دوره آموزشی Machine Learning A-Z: AI, Python & R + ChatGPT Prize [2025] با اصول و الگوریتمهای یادگیری ماشین با استفاده از پایتون و R آشنا خواهید شد.
در این دورهٔ عملی، مگان سیلوی، مشاور علوم داده، شرکتکنندگان را در مسیر ساخت برنامههای کاربردی وب با استفاده از Streamlit هدایت میکند. به طور خاص، شرکتکنندگان یک دستیار کدنویسی مبتنی بر هوش مصنوعی (AI-powered coding assistant) را در محیط Streamlit خواهند ساخت. این دستیار به آنها کمک میکند تا با استفاده از زبان برنامهنویسی پایتون و API شرکت OpenAI، داشبوردهای دادهٔ تعاملی را تولید، اصلاح و نگهداری کنند. در ابتدا، شرکتکنندگان با ساخت یک دستیار هوش مصنوعی ساده مبتنی بر چت در Streamlit آغاز خواهند کرد. سپس، نحوهٔ بارگذاری، آمادهسازی و تحلیل دادههای خود را در Streamlit فرا خواهند گرفت. در مرحلهٔ بعد، از طریق تعاملات مکالمهای با یک دستیار هوش مصنوعی جاسازیشده، داشبوردهای پویا همراه با فیلترها و انواع گوناگونی از بصریسازیها (ویژوالها) را ایجاد خواهند کرد. در نهایت، آموزش داده میشود که چگونه داشبورد هوش مصنوعی کاملاً کاربردی خود را آزمایش کرده، نگهداری کنند و آن را بر روی Streamlit Community Cloud مستقر سازند. این دوره جامع، مهارتهای لازم برای ساخت ابزارهای دادهای قدرتمند و تعاملی را با تمرکز بر بهرهگیری از قابلیتهای هوش مصنوعی فراهم میآورد.
در دوره آموزشی Build with AI: AI-Powered Dashboards with Streamlit با ساخت برنامههای کاربردی وب تعاملی مبتنی بر داده و هوش مصنوعی آشنا خواهید شد.
در این دوره جامع با محوریت پایگاههای داده برداری (Vector Databases)، شرکتکنندگان به دنیای هیجانانگیز فناوریهای پیشرفتهای که در حال متحول ساختن حوزه هوش مصنوعی (AI)، به ویژه هوش مصنوعی مولد (Generative AI) هستند، قدم خواهند گذاشت. این دوره با تمرکز بر «آیندهسازی هوش مصنوعی مولد» (Future-Proofing Generative AI)، دانش و مهارتهای لازم برای مهار قدرت پایگاههای داده برداری را در کاربردهای پیشرفتهای مانند مدلهای زبان بزرگ (LLM)، ترانسفورماتورهای از پیش آموزشدیده مولد (GPT) نظیر ChatGPT، و توسعه هوش عمومی مصنوعی (AGI) در اختیار شرکتکنندگان قرار میدهد. با شروع از مفاهیم پایهای، شرکتکنندگان اصول اولیه پایگاههای داده برداری و نقش آنها در ایجاد تحول در جریانهای کاری هوش مصنوعی را فرا خواهند گرفت. از طریق مثالهای کاربردی و تمرینهای کدنویسی عملی، تکنیکهایی مانند نمایهسازی، ذخیرهسازی، بازیابی دادههای برداری و کاهش بُعدی مورد بررسی قرار میگیرند. همچنین، مهارت لازم برای ادغام پایگاه داده برداری Pinecone با ابزارهای دیگری مانند LangChain و API اوپنایآی (OpenAI API) با استفاده از پایتون (Python)، جهت پیادهسازی کاربردهای واقعی و آزادسازی تمام پتانسیل پایگاههای داده برداری، کسب خواهد شد.
در دوره آموزشی Master Vector Database with Python for AI & LLM Use Cases با استفاده از پایگاههای داده برداری برای کاربردهای پیشرفته هوش مصنوعی و مدلهای زبان بزرگ آشنا خواهید شد.
این دوره با معرفی سریع و اجمالی رابط کاربری R Studio آغاز میشود. سپس، شرکتکنندگان بلافاصله با یک فایل داده واقعی کار را شروع میکنند. در این بخش، یک روال غربالگری داده، شامل بازرسی توزیع متغیرها با استفاده از نمودارهای میلهای و هیستوگرامها، بررسی متغیرهای رشتهای ناخواسته (Chr)، شمارش مقادیر گمشده (NA) و موارد دیگر، به صورت گام به گام به آنان آموزش داده میشود. پس از آن، به برخی از تحلیلهای بنیادی داده، مانند جداول فراوانی همراه با فراوانیها و درصد ستونی، آمار توصیفی برای تمامی مشاهدات و زیرگروهها به صورت جداگانه، جداول توافقی با فراوانیها و درصدهای ستونی، و همبستگیهای پیرسون با حذف مقادیر گمشده به صورت لیستی و زوجی پرداخته میشود. در ادامه، نحوه وارد کردن و صادر کردن انواع فایلها مانند R, RData, RDS, Excel, CSV, SAV و PNG به R Studio آموزش داده میشود. در نهایت، دوره با آموزش مهارتهای ویرایش داده، از جمله مرتبسازی مجدد و حذف متغیرها (ستونها) یا مشاهدات (ردیفها) و شمارش مقادیر گمشده (NA) در داخل مشاهدات، به پایان میرسد. همچنین، محاسبه میانگینها و مجموعها بر روی متغیرها با و بدون مقادیر گمشده نیز پوشش داده میشود.
در دوره آموزشی R Studio - A Crash Course با تحلیل داده و کار با نرمافزار R Studio آشنا خواهید شد.
این دوره یک آشنایی کامل با یادگیری تقویتی عمیق است. یادگیری تقویتی عمیق روشهای یادگیری تقویتی را با شبکههای عصبی عمیق پیوند میدهد. تمرکز اصلی بر درک مفاهیم و پیادهسازی عملی آنها است. این دوره با مرور اصول اولیه یادگیری تقویتی و چگونگی عملکرد تقریب توابع با استفاده از شبکههای عصبی آغاز میشود. سپس، به روشهای مبتنی بر ارزش مانند شبکههای Q عمیق (DQN) و نسخههای پیشرفتهتر آنها پرداخته میشود. همچنین الگوریتمهای گرادیان سیاست مانند PPO, DDPG, TD3, و SAC و تکنیکهای پیشرفته برای اکتشاف، یادگیری مبتنی بر مدل، و آموزش چند عاملی را پوشش میدهد. این دوره یک رویکرد عملی دارد و شامل تمرینهای کدنویسی با استفاده از PyTorch است. شرکتکنندگان در این دوره، عوامل هوشمند خود را میسازند، با محیطهایی مانند بازیهای آتاری و شبیهسازیهای رباتیک آزمایش میکنند و یاد میگیرند که چگونه یک فرایند توسعه مناسب برای تحقیقات و کاربردهای یادگیری تقویتی عمیق را تنظیم کنند. علاوه بر الگوریتمهای اصلی، موضوعات مهم و مدرن دیگری نیز پوشش داده میشوند. از جمله این مباحث میتوان به اکتشاف مبتنی بر کنجکاوی، مکانیسمهای توجه، مدلهای جهان، آموزش توزیعشده، و یادگیری تقویتی از بازخورد انسانی اشاره کرد. این موضوعات به شرکتکنندگان دیدگاهی گستردهتر درباره نحوه کاربرد عملی یادگیری تقویتی عمیق در دنیای واقعی میدهند.
در دوره آموزشی Deep Reinforcement Learning با ترکیب یادگیری تقویتی و شبکههای عصبی عمیق آشنا خواهید شد.
در این دوره، دانشپذیران با دموهای گام به گام و هدایتشده، اعتماد به نفس خود را برای یادگیری مهارتهای بنیادی افزایش میدهند. به جای حفظ کردن فرمولهای ریاضی پیچیده یا یادگیری یک زبان برنامهنویسی جدید، تکنیکهای یادگیری ماشین به صورت مفهومی تشریح میشوند تا فراگیران دقیقا درک کنند که این تکنیکها چگونه و چرا کار میکنند. با دنبال کردن مثالهای ساده و بصری و تعامل با مدلهای کاربرپسند مبتنی بر اکسل، شرکتکنندگان میتوانند موضوعاتی مانند رگرسیون خطی و لجستیک، درختهای تصمیم، کا-نزدیکترین همسایهها (KNN)، نایو بیز، خوشهبندی سلسلهمراتبی و تحلیل احساسات را بدون نیاز به نوشتن حتی یک خط کد یاد بگیرند. در بخش ۱ این دوره، شرکتکنندگان با گردش کار یادگیری ماشین و تکنیکهای رایج برای پاکسازی و آمادهسازی دادههای خام جهت تحلیل آشنا میشوند. همچنین، با استفاده از جداول فراوانی، هیستوگرامها و نمودارهای توزیع، تحلیل تکمتغیره را بررسی خواهند کرد و سپس به ابزارهای تحلیل چندمتغیره مانند نقشههای حرارتی، نمودارهای ویولن و جعبهای، نمودارهای پراکندگی و همبستگی خواهند پرداخت.
در دوره آموزشی Machine Learning & Data Science: The Complete Visual Guide با مفاهیم و تکنیکهای یادگیری ماشین و علم داده آشنا خواهید شد.
این دوره آموزشی برای دانشجویانی طراحی شده که میخواهند از یک برنامهنویس مبتدی به یک متخصص در کتابخانه نامپای تبدیل شوند. نامپای زیربنای اصلی تقریباً تمام کتابخانههای یادگیری ماشین، یادگیری عمیق و هوش مصنوعی است. از جمله این کتابخانهها میتوان به سایپای (SciPy)، پانداس (Pandas)، پایتورچ (PyTorch) و تنسورفلو (TensorFlow) اشاره کرد. این دوره به افراد کمک میکند تا چالشهای رایج در یادگیری نامپای را پشت سر بگذارند و از صرفاً استفاده از توابع فراتر رفته و به درکی عمیق از عملکرد داخلی آن برسند. این دوره یک آموزش ساده در مورد توابع نامپای نیست. بلکه رویکرد آن بر پرورش تفکر نامپای در دانشجویان تمرکز دارد تا بتوانند با اطمینان، کدهای حرفهای را نوشته و اشکالزدایی کنند. دانشجویان در طول دوره با مفاهیم گامبهگام و از طریق تمرینهای کدنویسی، پروژههای واقعی و آزمونها آشنا میشوند. در پایان این دوره، آنها تنها توابع نامپای را نمیشناسند، بلکه نحوه عملکرد آن در پشت پرده محاسبات مربوط به سیستمهای مدرن یادگیری ماشین و هوش مصنوعی را نیز درک خواهند کرد. این دانش به دانشجویان اعتماد به نفس لازم برای کار با کتابخانههای پیشرفته و پروژههای دنیای واقعی را میدهد.
در دوره آموزشی NumPy Mastery for Machine Learning & AI-Beginner to Pro 2025 با کتابخانه نامپای، نحوه تفکر در آن، و کاربردهای آن در یادگیری ماشین و هوش مصنوعی آشنا خواهید شد.
این دوره جامع، شرکتکنندگان را از اصول اولیه MongoDB به سمت پایگاههای داده وکتور پیشرفته مبتنی بر هوش مصنوعی هدایت میکند. این دوره برای افراد مبتدی و علاقهمندانی که میخواهند تکنیکهای پایگاه داده مدرن و ادغام هوش مصنوعی را فرا بگیرند، بسیار مناسب است. در طول دوره، شرکتکنندگان با ابزارهای مختلفی از جمله MongoDB Shell، Compass، PyMongo، و MongoDB Atlas کار خواهند کرد و با مفاهیم پایگاه داده وکتور، جستجوهای متنی، و تکنیکهای پیشرفتهای مانند Pipeline Aggregation آشنا میشوند. آنها همچنین به صورت عملی با LangChain و OpenAI LLMs کار میکنند تا یاد بگیرند چگونه متن تولید کرده و از OpenAI Embeddings استفاده کنند. این دوره به صورت عملی طراحی شده و با ارائه منابعی مانند نوتبوکهای کامل ژوپیتر، دیتاستهای نمونه، فایلهای پیکربندی، و کدهای شروع، یادگیری را تسهیل میکند. تمرینهای عملی و راهحلهای مربوط به آنها نیز ارائه شده است تا شرکتکنندگان بتوانند مهارتهای خود را تقویت کنند. یکی از بخشهای کلیدی این دوره، آموزش ساخت سیستمهای RAG (تولید مبتنی بر بازیابی) است که در آنها پایگاههای داده سنتی با فناوریهای هوش مصنوعی در MongoDB Atlas ترکیب میشوند. به طور کلی، این دوره به شرکتکنندگان کمک میکند تا مهارتهای لازم برای کار با پایگاههای داده مدرن و فناوریهای هوش مصنوعی مرتبط را کسب کنند.
در دوره آموزشی MongoDB Atlas Vector Database: Zero to Advanced with Python با پایگاه داده MongoDB و تکنیکهای پیشرفته آن، از جمله پایگاه داده وکتور، و همچنین ادغام آن با هوش مصنوعی و ابزارهای مرتبط آشنا خواهید شد.