دانلود ها ی دارای تگ: "attention"
2 مورد برای عبارت مورد نظر پیدا شد.
2 مورد برای عبارت مورد نظر پیدا شد.
به این دوره جامع خوش آمدید که به شما نحوه کار مدلهای زبان بزرگ (LLM) را آموزش میدهد! در سالهای اخیر، LLMها حوزه هوش مصنوعی را متحول کردهاند و به برنامههایی مانند ChatGPT، DeepSeek و دیگر دستیاران پیشرفته هوش مصنوعی قدرت بخشیدهاند. اما این مدلها چگونه متن شبیه به انسان را درک کرده و تولید میکنند؟ در این دوره، مفاهیم اساسی پشت LLMها، از جمله مکانیزمهای توجه، ترانسفورمرها، و معماریهای مدرن مانند DeepSeek را به تفصیل بررسی خواهیم کرد. در ابتدا، ایده اصلی مکانیزمهای توجه را کاوش خواهیم کرد که به مدلها اجازه میدهند روی مرتبطترین بخشهای متن ورودی تمرکز کنند و درک متنی را بهبود بخشند. سپس، به ترانسفورمرها، ستون فقرات LLMها، خواهیم پرداخت و تحلیل خواهیم کرد که چگونه پردازش موازی کارآمد متن را امکانپذیر میسازند و منجر به عملکردی پیشرو در پردازش زبان طبیعی (NLP) میشوند. همچنین با خود-توجهی (self-attention)، رمزگذاریهای موقعیتی (positional encodings) و توجه چند-سر (multi-head attention) آشنا خواهید شد که اجزای کلیدی هستند و به مدلها کمک میکنند تا وابستگیهای بلندمدت در متن را ثبت کنند. فراتر از اصول اولیه، DeepSeek را که یک مدل متنباز پیشرفته طراحی شده برای گسترش مرزهای کارایی و عملکرد هوش مصنوعی است، بررسی خواهیم کرد. شما درک خواهید کرد که DeepSeek چگونه مکانیزمهای توجه را بهینهسازی میکند و چه چیزی آن را به یک رقیب قدرتمند برای سایر LLMها تبدیل کرده است.
در دوره آموزشی Introduction to LLMs Transformer,Attention, Deepseek pytorch با عملکرد، ساختار و کاربرد مدلهای زبان بزرگ (LLM) آشنا خواهید شد.
در سالهای اخیر، مدلهای زبانی بزرگ انقلابی در حوزه هوش مصنوعی ایجاد کردهاند و به برنامههایی مانند ChatGPT، DeepSeek و سایر دستیارهای پیشرفته هوش مصنوعی قدرت میبخشند. اما این مدلها چگونه متن شبیه به انسان را درک و تولید میکنند؟ در این دوره، مفاهیم اساسی پشت مدلهای زبانی بزرگ، شامل مکانیزمهای توجه، ترنسفورمرها و معماریهای مدرن مانند DeepSeek، به صورت جزء به جزء بررسی خواهد شد. این دوره با کاوش در ایده اصلی مکانیزمهای توجه آغاز میشود که به مدلها اجازه میدهد بر روی مرتبطترین بخشهای متن ورودی تمرکز کنند و درک متنی را بهبود بخشند. سپس، به بررسی ترنسفورمرها، ستون فقرات مدلهای زبانی بزرگ، پرداخته میشود و تحلیل میشود که چگونه این مدلها پردازش موازی کارآمد متن را ممکن میسازند و منجر به عملکردی پیشرفته در پردازش زبان طبیعی (NLP) میشوند. همچنین، با توجه به خود (self-attention)، کدگذاریهای موقعیتی (positional encodings) و توجه چند سر (multi-head attention)، که اجزای کلیدی برای کمک به مدلها در درک وابستگیهای بلندمدت در متن هستند، آشنا خواهید شد. فراتر از اصول اولیه، DeepSeek، یک مدل متنباز پیشرفته که برای پیشبرد کارایی و عملکرد هوش مصنوعی طراحی شده است، مورد بررسی قرار میگیرد. در این بخش، بینشهایی در مورد چگونگی بهینهسازی مکانیزمهای توجه توسط DeepSeek و آنچه آن را به رقیبی قدرتمند برای سایر مدلهای زبانی بزرگ تبدیل میکند، به دست خواهید آورد.
در دوره آموزشی Introduction to LLMs Transformer,Attention, Deepseek pytorch با عملکرد مدلهای زبانی بزرگ (LLM) شامل ترنسفورمرها، مکانیزمهای توجه و مدل DeepSeek آشنا خواهید شد.