دانلود ها ی دارای تگ: "large language models"
14 مورد برای عبارت مورد نظر پیدا شد.
14 مورد برای عبارت مورد نظر پیدا شد.
این دوره آموزشی به صورت تخصصی بر حوزه نوین و پرطرفدار عاملهای هوشمند (AI Agents) تمرکز دارد و به شرکتکنندگان میآموزد که چگونه با بهرهگیری از توانمندیهای کتابخانه LangChain و قدرت مدلهای زبانی پیشرفتهای نظیر Google Gemini، سیستمهایی فراتر از چتباتهای ساده خلق کنند. در طول این مسیر آموزشی، دانشجویان با مفاهیم بنیادی و زیرساختی عاملهای هوشمند آشنا شده و گامبهگام به سمت طراحی سیستمهای پیچیده و آماده برای ورود به بازار کار و محیطهای تولیدی حرکت میکنند.
تفاوت کلیدی عاملهای هوشمند با ابزارهای چت سنتی در توانایی آنها برای «تفکر و استدلال» نهفته است. در این دوره، مدرس با رویکردی پروژهمحور و عملی نشان میدهد که چگونه یک عامل هوشمند میتواند از ابزارهای مختلف استفاده کند، به پایگاههای داده و APIهای خارجی متصل شود، تاریخچه تعاملات با کاربر را به خاطر بسپارد و در نهایت وظایف دشوار و زمانبر را به صورت خودکار انجام دهد.
در دوره Agentic AI: Deploy LangChain AI Agent Projects to Production با طراحی و استقرار سیستمهای خودمختار هوشمند آشنا خواهید شد.
در دنیای امروز که حجم دادهها بهطور توامان رو به افزایش است، روشهای سنتی دیگر پاسخگوی نیازهای پیچیده کاربران نیستند. این دوره آموزشی با هدف عبور از الگوریتمهای کلاسیک طراحی شده است تا به متخصصان نشان دهد چگونه میتوانند سیستمهای توصیهگر موجود را با استفاده از قدرت هوش مصنوعی ارتقا بخشند. مدرس دوره، ریشابا میسرا، با تمرکز بر جنبههای فنی و عملی، مفاهیم کلیدی همچون تولید تعبیهها (Embeddings)، بازرتبهبندی معنایی (Semantic Reranking) و مقابله با چالش «شروع سرد» (Cold Start) را تشریح میکند.
بخش مهمی از این آموزش به معماریهای بومی هوش مصنوعی مولد (GenAI-native) اختصاص یافته است. این معماریها امکان ایجاد تجربههای پویا و تعاملی مانند جستجوی گفتگومحور و توصیههای چندرسانهای (Multimodal) را فراهم میکنند. شرکتکنندگان در این مسیر یاد میگیرند که چگونه از ساختارهای ایستا فاصله گرفته و به سمت سیستمهایی حرکت کنند که قادر به درک عمیقتری از نیات کاربران هستند.
در دوره Building LLM-Powered Recommendation Systems با مفاهیم و زیرساختهای نوین طراحی سیستمهای پیشنهاددهنده مبتنی بر GenAI آشنا خواهید شد.
این دوره آموزشی با هدف تبدیل کردن علاقهمندان به مهندسان خبره هوش مصنوعی طراحی شده است و مسیری شفاف و گامبهگام را برای یادگیری پیش روی مخاطب قرار میدهد. در این برنامه آموزشی، تمرکز تنها بر ارائه تئوریها و مفاهیم انتزاعی نیست، بلکه شرکتکنندگان یاد میگیرند که چگونه سیستمهای هوشمند واقعی را از صفر طراحی کرده و بسازند. یکی از ویژگیهای برجسته این دوره، ایجاد درک عمیق از چرایی عملکرد الگوریتمهاست؛ به طوری که دانشجو صرفاً یک اپراتور ابزار نباشد، بلکه منطق پشت هر فناوری را به درستی درک کند.
در طول مسیر آموزشی، نحوه اتصال اجزای مختلف هوش مصنوعی از جمله دادهکاوی، یادگیری ماشین (Machine Learning)، یادگیری عمیق (Deep Learning) و مهندسی مدلهای زبانی بزرگ (LLM) مورد بررسی قرار میگیرد. برخلاف بسیاری از دورههای مشابه که ابزارها را به صورت جزیرهای و جداگانه آموزش میدهند، این دوره بر روی یکپارچهسازی تمام این تخصصها در قالب یک «جریان کاری مهندسی» (Workflow) تمرکز دارد؛ دقیقاً همان روشی که در صنایع پیشرو و پروژههای بزرگ تجاری در سطح جهان به کار گرفته میشود.
در دوره آموزشی Full Stack AI Engineering Bootcamp با فرآیند جامع طراحی و پیادهسازی سیستمهای هوشمند در صنعت آشنا خواهید شد.
دنیای امروز تحت تأثیر مدلهای زبانی بزرگ یا همان LLMها قرار گرفته است؛ سیستمهای پیشرفتهای که هسته اصلی ابزارهایی مانند ChatGPT را تشکیل میدهند. این مدلها بر اساس حجم عظیمی از دادههای متنی آموزش دیدهاند تا توانایی درک دستورات پیچیده، تولید محتوای خلاقانه، استدلال منطقی بر اساس متن و حتی استفاده از ابزارهای جانبی برای انجام وظایف خاص را داشته باشند. با این حال، نویسنده متن معتقد است که ساخت یک اپلیکیشن مبتنی بر هوش مصنوعی که در سطح تجاری و تولیدی قابل اعتماد باشد، فراتر از نوشتن چند دستور ساده یا به اصطلاح "Prompting" است. برای رسیدن به یک خروجی پایدار، برنامهنویسان و توسعهدهندگان باید با معماری زیرساختی این مدلها آشنا شوند.
در دوره آموزشی LLM Engineering: Build Production-Ready AI Systems مدلهای زبانی بزرگ (LLM) و تکنیکهای پیشرفته توسعه هوش مصنوعی با نحوه ساخت اپلیکیشنهای حرفهای و مبتنی بر هوش مصنوعی آشنا خواهید شد.
دنیای هوش مصنوعی از مدلهای ساده چتبات فراتر رفته و به سمت «عاملهای هوشمند» حرکت کرده است؛ موجودیتهایی که نه تنها پاسخ میدهند، بلکه میتوانند از ابزارها استفاده کرده و وظایف پیچیده را به صورت خودکار انجام دهند. در این دوره آموزشی، اپریل گیتنز (April Gittens)، مهندس باسابقه هوش مصنوعی، به زبانی ساده و تخصصی نشان میدهد که چگونه میتوان با بهرهگیری از قدرت پایتون و افزونه کاربردی AI Toolkit در محیط ویرایشگر Visual Studio Code، عاملهایی ساخت که توانایی تعامل هوشمندانه با محیط را داشته باشند.
بخش اول آموزش بر پایه و اساس معماری عاملها تمرکز دارد. مخاطب میآموزد که یک عامل هوشمند دقیقاً چگونه فکر میکند و چطور میتوان با نوشتن دستورات (Prompts) اثربخش، رفتار آن را هدایت کرد. همچنین استفاده از اسکیماها (Schemas) برای دریافت خروجیهای ساختاریافته آموزش داده میشود تا اطمینان حاصل شود که عامل هوشمند، دادهها را به شکلی دقیق و قابل استفاده برای برنامههای دیگر ارائه میدهد.
در مراحل پیشرفتهتر، شرکتکنندگان یاد میگیرند که چگونه با تعریف ابزارهای اختصاصی (Custom Tools)، قابلیتهای عامل خود را گسترش دهند. این یعنی عامل هوشمند فقط به دانش متنی محدود نمیشود و میتواند عملیاتی مانند جستجوی داده یا محاسبات خاص را انجام دهد. علاوه بر این، دوره به موضوع حیاتی ارزیابی پاسخها میپردازد. با استفاده از معیارهای سنجش داخلی (Metrics)، برنامهنویس میتواند کیفیت و دقت عملکرد عامل را بررسی کرده و آن را برای سناریوهای واقعی و چالشبرانگیز در دنیای صنعت آماده کند.
در دوره آموزشی Creating Agents with Python and the AI Toolkit for Visual Studio Code با نحوه طراحی، پیادهسازی و ارزیابی عاملهای هوشمند کاربردی آشنا خواهید شد.
در دنیای امروز که هوش مصنوعی با سرعتی باورنکردنی در حال تغییر دادن ساختارهای شغلی و مدیریتی است، درک دقیق مفاهیم پشت پرده ابزارهایی مانند ChatGPT برای هر متخصص یا مدیری به یک ضرورت تبدیل شده است. این دوره آموزشی با تمرکز بر نیازهای حرفهایهای دنیای کسبوکار و تکنولوژی طراحی شده است که فرصت کافی برای گذراندن دورههای طولانی آکادمیک را ندارند. رویکرد اصلی این برنامه، سادهسازی مفاهیم بسیار پیچیده ریاضی و محاسباتی است که در قلب مدلهای زبانی بزرگ نهفته است. مدرس در این دوره از متدی منحصربهفرد استفاده میکند که در آن به جای کدنویسیهای سنگین یا استفاده از فرمولهای پیچیده دیفرانسیل و انتگرال، از ابزارهای ملموستری مانند جداول اکسل برای شبیهسازی فرآیندها استفاده میشود. این روش به مخاطب اجازه میدهد تا به صورت بصری و گامبهگام ببیند که چگونه دادههای متنی به اعداد تبدیل میشوند و مدل چگونه میتواند از میان میلیاردها احتمال، کلمه بعدی را پیشبینی کند.
هدف اصلی این آموزش، ارتقای سطح سواد هوش مصنوعی (AI Literacy) در میان مدیران، توسعهدهندگان و استراتژیستها است تا بتوانند با دیدی بازتر و دانش فنی عمیقتر، پروژههای مبتنی بر هوش مصنوعی را در سازمان خود هدایت کنند. شرکتکنندگان در این دوره میآموزند که مدلهایی نظیر GPT-2 دقیقاً از چه اجزایی تشکیل شدهاند و هر بخش چه نقشی در پردازش زبان ایفا میکند. این دوره تنها به مباحث تئوریک بسنده نمیکند، بلکه با ارائه تمرینهای تعاملی، شکاف بین دانش نظری و کاربرد عملی را پر میکند. در نهایت، فرد آموزشدیده قادر خواهد بود با اعتمادبهنفس کامل در جلسات فنی حضور یافته، محدودیتها و توانمندیهای واقعی مدلهای زبانی را تشخیص دهد و از افتادن در دام تبلیغات اغراقآمیز درباره هوش مصنوعی جلوگیری کند. این مسیر یادگیری سریع، یک پایه مستحکم برای هرگونه فعالیت آتی در حوزه هوش مصنوعی فراهم میسازد که تا سالها اعتبار علمی و کاربردی خود را حفظ خواهد کرد.
در دوره آموزشی How AI & LLMs Work: A Fast-Track Crash Course for Busy Professionals با مفاهیم فنی LLMها، معماری مدلهای ترنسفورمر و کاربرد عملی آنها در محیطهای حرفهای آشنا خواهید شد.
بسیاری از متخصصان بر این باورند که محدودیتهای سیستمهای هوش مصنوعی امروزی ناشی از ضعف مدلهای زبانی است، اما واقعیت این است که شکست این سیستمها اغلب از دستورالعملهای ضعیف، آزمایشنشده، ناامن یا مدیریتنشده ریشه میگیرد. این دوره آموزشی با هدف تغییر دیدگاه کاربران از نوشتن دستورالعملهای مبتنی بر «آزمون و خطا» به سمت یک رویکرد «مهندسیمحور» طراحی شده است. در این مسیر، شرکتکنندگان میآموزند که چگونه با دقت و سختگیری مشابه در مهندسی نرمافزار، با دستورالعملهای هوش مصنوعی برخورد کنند و آنها را به عنوان داراییهای ارزشمند تولیدی مدیریت نمایند.
در بخشهای مختلف این دوره، مفاهیم حیاتی مانند نسخهبندی دستورالعملها، انجام تستهای A/B برای یافتن بهترین خروجی، و اجرای تستهای رگرسیون جهت اطمینان از پایداری مدل مورد بررسی قرار میگیرد. همچنین تمرکز ویژهای بر مباحث امنیت و بررسیهای ایمنی وجود دارد تا از سوءاستفادههای احتمالی یا خروجیهای نامطلوب جلوگیری شود. شرکتکنندگان از طریق آزمایشگاههای عملی و مثالهای واقعی در دنیای تجارت، تجربه کسب میکنند که چگونه حتی کوچکترین تغییر در ساختار یک دستورالعمل میتواند تأثیرات شگرف و تعیینکنندهای بر پارامترهای کلیدی پروژه داشته باشد. این پارامترها شامل دقت پاسخدهی، هزینههای پردازشی، سرعت پاسخدهی (Latency)، ایمنی دادهها و در نهایت قابلیت اطمینان کل سیستم هوش مصنوعی است.
در دوره آموزشی Applied Prompt Engineering for AI Systems با اصول حرفهای طراحی و بهینهسازی سیستماتیک دستورالعملهای هوش مصنوعی آشنا خواهید شد.
فناوری هوش مصنوعی مولد (Generative AI) و مدلهای زبانی بزرگ (LLMs) در حال حاضر انقلابی بنیادین در نحوه توسعه نرمافزارها، فرآیندهای کسبوکار و مسیرهای شغلی ایجاد کردهاند. این دوره آموزشی با رویکردی از سطح مبتدی تا متوسط طراحی شده است تا به دانشپذیران کمک کند نه تنها درک عمیقی از زیرساختهای این فناوری به دست آورند، بلکه با اعتماد به نفس کامل برای شرکت در آزمون تخصصی NVIDIA Certified Associate – Generative AI and LLMs (NCA-GENL) آماده شوند.
محتوای این برنامه آموزشی دقیقاً بر اساس راهنمای رسمی آزمون و سرفصلهای تایید شده توسط شرکت انویدیا تدوین شده است. این موضوع تضمین میکند که تمامی مباحث تدریس شده به طور مستقیم با اهداف گواهینامه همسو باشد. با این حال، دوره تنها به مباحث تئوری آزمون محدود نمیشود؛ بلکه هدف نهایی آن، ایجاد مهارتهای عملی و واقعی در حوزه GenAI است که فراتر از آمادگی برای یک امتحان ساده، فرد را برای چالشهای دنیای واقعی تکنولوژی آماده میسازد.
در دوره آموزشی NVIDIA GenAI & LLMs: Learn and Pass NCA-GENL Certification با مفاهیم هوش مصنوعی مولد و آمادگی برای آزمون تخصصی انویدیا آشنا خواهید شد.
انقلاب هوش مصنوعی فرا رسیده است، در حالی که سیستمهای سازمانی همچنان با زبان جاوا قدرت میگیرند. توسعهدهندگان جاوا به یک روش مدرن و کاربردی برای ادغام مدلهای زبان بزرگ (LLM) بدون نیاز به دانش عمیق در زمینه علم داده نیاز دارند. این دوره پاسخی مستقیم به این نیاز است و یک توسعهدهنده Spring Boot را به یک مهندس هوش مصنوعی با تقاضای بالا تبدیل میکند. در این دوره، موارد غیرضروری کنار گذاشته شده و دقیقاً نحوه ساخت ویژگیهای هوش مصنوعی قوی و مقیاسپذیر با استفاده از الگوهای آشنای اکوسیستم Spring آموزش داده میشود. حرکت از مفاهیم بنیادی به سمت ویژگیهای عملیاتی و آماده برای تولید (Production) به سرعت انجام میگیرد: شرکتکننده بر مکانیک اصلی مدلهای LLM—مانند توکنها (Tokens)، پرامپتها (Prompts) و پنجرههای محتوا (Context Windows)—که اجزای سازنده هر برنامه هوش مصنوعی هستند، تسلط پیدا خواهد کرد. اولین برنامه Spring AI خود را از پایه خواهد ساخت. فراتر از تولید متن، ادغام قابلیتهایی چون تولید تصویر، تبدیل متن به گفتار (TTS)، تبدیل گفتار به متن (STT) و قابلیتهای چندحالتی (Multimodal) (بینایی/صوتی) را میآموزد. همچنین، خطوط لوله (Pipelines) تعدیل (Moderation) را با استفاده از هر دو مدل OpenAI و مدل رایگان Mistral پیادهسازی خواهد کرد.
در دوره آموزشی Spring AI: Build Java AI Apps, Chatbots & RAG Systems (2026) شما با نحوه ادغام مدلهای زبان بزرگ (LLM) در برنامههای Spring Boot با استفاده از فریمورک Spring AI آشنا خواهید شد.
این بوتکمپ جامع مهندسی هوش مصنوعی و مدلهای زبانی بزرگ، دورهای یکپارچه برای یادگیری پایتون، گیت، داکر، پایدنتیک، مدلهای زبانی بزرگ (LLMs)، عاملها (Agents)، بازیابی افزوده-تولیدی (RAG)، لنگچین (LangChain)، لنگگراف (LangGraph) و هوش مصنوعی چندوجهی از پایه است. این دوره تنها یک آموزش نظری نیست. در پایان آن، شرکتکنندگان قادر خواهند بود تا برنامههای کاربردی هوش مصنوعی دنیای واقعی را کدنویسی، استقرار و مقیاسدهی کنند؛ برنامههایی که از همان تکنیکهای قدرتمند چتجیپیتی، جمینی و کلود استفاده میکنند.
در دوره آموزشی Full-Stack AI with Python: LLMs, RAG, Agents & LangGraph با مهندسی هوش مصنوعی، مدلهای زبانی بزرگ و ابزارهای مرتبط آشنا خواهید شد.