دانلود ها ی دارای تگ: "llm"
37 مورد برای عبارت مورد نظر پیدا شد.
37 مورد برای عبارت مورد نظر پیدا شد.
در دنیای تکنولوژی و بازار کار پویای امروز، اسپرینگ بوت به عنوان مهارتی بیرقیب و شماره یک برای توسعه نرمافزارهای سازمانی به زبان جاوا شناخته میشود. تقاضا برای استخدام برنامهنویسانی که تسلط کافی بر اکوسیستم اسپرینگ دارند، به طرز چشمگیری افزایش یافته است؛ به طوری که این متخصصان معمولاً بالاترین سطح حقوقی را دریافت کرده و در معتبرترین موقعیتهای شغلی جذب میشوند. این فریمورک قدرتمند، در واقع ستون فقرات تعداد بیشماری از اپلیکیشنهای مدرن را تشکیل میدهد و از استارتاپهای نوپا گرفته تا شرکتهای عظیم در فهرست «فورچون ۵۰۰»، همگی برای زیرساختهای خود به آن تکیه کردهاند.
افزودن نام «اسپرینگ فریمورک» به رزومه کاری، تنها یک مزیت ساده نیست؛ بلکه فرد را به یکی از برترین کاندیداها برای تصاحب جایگاههای شغلی در حوزههای توسعه سمت سرور (Backend)، توسعه تمامساحه (Full-stack) و همچنین توسعه زیرساختهای ابری تبدیل میکند. یادگیری این ابزار به توسعهدهنده اجازه میدهد تا با سرعت و کارایی بسیار بالا، برنامههایی بنویسد که نه تنها مقیاسپذیر هستند، بلکه امنیت و پایداری لازم برای محیطهای تجاری را نیز دارا میباشند.
در دوره آموزشی Java Spring Framework, Spring Boot, Spring AI - Gen AI با فریمورک Spring Boot و توسعه نرمافزارهای سازمانی پیشرفته آشنا خواهید شد.
در دنیای امروز که هوش مصنوعی با سرعتی باورنکردنی در حال تغییر دادن ساختارهای شغلی و مدیریتی است، درک دقیق مفاهیم پشت پرده ابزارهایی مانند ChatGPT برای هر متخصص یا مدیری به یک ضرورت تبدیل شده است. این دوره آموزشی با تمرکز بر نیازهای حرفهایهای دنیای کسبوکار و تکنولوژی طراحی شده است که فرصت کافی برای گذراندن دورههای طولانی آکادمیک را ندارند. رویکرد اصلی این برنامه، سادهسازی مفاهیم بسیار پیچیده ریاضی و محاسباتی است که در قلب مدلهای زبانی بزرگ نهفته است. مدرس در این دوره از متدی منحصربهفرد استفاده میکند که در آن به جای کدنویسیهای سنگین یا استفاده از فرمولهای پیچیده دیفرانسیل و انتگرال، از ابزارهای ملموستری مانند جداول اکسل برای شبیهسازی فرآیندها استفاده میشود. این روش به مخاطب اجازه میدهد تا به صورت بصری و گامبهگام ببیند که چگونه دادههای متنی به اعداد تبدیل میشوند و مدل چگونه میتواند از میان میلیاردها احتمال، کلمه بعدی را پیشبینی کند.
هدف اصلی این آموزش، ارتقای سطح سواد هوش مصنوعی (AI Literacy) در میان مدیران، توسعهدهندگان و استراتژیستها است تا بتوانند با دیدی بازتر و دانش فنی عمیقتر، پروژههای مبتنی بر هوش مصنوعی را در سازمان خود هدایت کنند. شرکتکنندگان در این دوره میآموزند که مدلهایی نظیر GPT-2 دقیقاً از چه اجزایی تشکیل شدهاند و هر بخش چه نقشی در پردازش زبان ایفا میکند. این دوره تنها به مباحث تئوریک بسنده نمیکند، بلکه با ارائه تمرینهای تعاملی، شکاف بین دانش نظری و کاربرد عملی را پر میکند. در نهایت، فرد آموزشدیده قادر خواهد بود با اعتمادبهنفس کامل در جلسات فنی حضور یافته، محدودیتها و توانمندیهای واقعی مدلهای زبانی را تشخیص دهد و از افتادن در دام تبلیغات اغراقآمیز درباره هوش مصنوعی جلوگیری کند. این مسیر یادگیری سریع، یک پایه مستحکم برای هرگونه فعالیت آتی در حوزه هوش مصنوعی فراهم میسازد که تا سالها اعتبار علمی و کاربردی خود را حفظ خواهد کرد.
در دوره آموزشی How AI & LLMs Work: A Fast-Track Crash Course for Busy Professionals با مفاهیم فنی LLMها، معماری مدلهای ترنسفورمر و کاربرد عملی آنها در محیطهای حرفهای آشنا خواهید شد.
دوره آموزشی «تسلط بر اتوماسیون هوش مصنوعی» با هدف آزادسازی پتانسیلهای نهفته هوش مصنوعی طراحی شده است تا شرکتکنندگان بتوانند این فناوری تحولآفرین را در کسبوکار یا پروژههای فردی خود به کار بگیرند. این برنامه آموزشی به گونهای تدوین شده که مخاطب را به یک سفر آموزشی عمیق در دنیای هوش مصنوعی ببرد و او را با مهارتهای لازم برای پیادهسازی و مدیریت موثر اتوماسیون هوش مصنوعی مجهز کند.
ساختار این دوره به گونهای است که ابتدا از مفاهیم پایه و بنیادی آغاز میشود. این رویکرد تضمین میکند که تمامی شرکتکنندگان، صرفنظر از پیشینه فنی قبلی، درک درستی از ماهیت هوش مصنوعی و توانمندیهای گسترده آن به دست آورند. مدرس در این بخش به تشریح چگونگی عملکرد الگوریتمها و مدلهای اولیه میپردازد تا بستری مناسب برای مباحث پیچیدهتر فراهم شود. در ادامه، دوره به بررسی روشهای عملی ادغام هوش مصنوعی در فرآیندهای کاری میپردازد. شرکتکنندگان یاد میگیرند که چگونه وظایف تکراری را شناسایی کرده و با استفاده از ابزارهای هوشمند، آنها را خودکارسازی کنند. این امر نه تنها باعث افزایش بهرهوری میشود، بلکه خطاهای انسانی را به حداقل رسانده و زمان ارزشمندی را برای تمرکز بر استراتژیهای کلان آزاد میکند.
در دوره آموزشی Master AI Agents Using n8n با نحوه پیادهسازی و مدیریت سیستمهای هوشمند خودکار آشنا خواهید شد.
بسیاری از متخصصان بر این باورند که محدودیتهای سیستمهای هوش مصنوعی امروزی ناشی از ضعف مدلهای زبانی است، اما واقعیت این است که شکست این سیستمها اغلب از دستورالعملهای ضعیف، آزمایشنشده، ناامن یا مدیریتنشده ریشه میگیرد. این دوره آموزشی با هدف تغییر دیدگاه کاربران از نوشتن دستورالعملهای مبتنی بر «آزمون و خطا» به سمت یک رویکرد «مهندسیمحور» طراحی شده است. در این مسیر، شرکتکنندگان میآموزند که چگونه با دقت و سختگیری مشابه در مهندسی نرمافزار، با دستورالعملهای هوش مصنوعی برخورد کنند و آنها را به عنوان داراییهای ارزشمند تولیدی مدیریت نمایند.
در بخشهای مختلف این دوره، مفاهیم حیاتی مانند نسخهبندی دستورالعملها، انجام تستهای A/B برای یافتن بهترین خروجی، و اجرای تستهای رگرسیون جهت اطمینان از پایداری مدل مورد بررسی قرار میگیرد. همچنین تمرکز ویژهای بر مباحث امنیت و بررسیهای ایمنی وجود دارد تا از سوءاستفادههای احتمالی یا خروجیهای نامطلوب جلوگیری شود. شرکتکنندگان از طریق آزمایشگاههای عملی و مثالهای واقعی در دنیای تجارت، تجربه کسب میکنند که چگونه حتی کوچکترین تغییر در ساختار یک دستورالعمل میتواند تأثیرات شگرف و تعیینکنندهای بر پارامترهای کلیدی پروژه داشته باشد. این پارامترها شامل دقت پاسخدهی، هزینههای پردازشی، سرعت پاسخدهی (Latency)، ایمنی دادهها و در نهایت قابلیت اطمینان کل سیستم هوش مصنوعی است.
در دوره آموزشی Applied Prompt Engineering for AI Systems با اصول حرفهای طراحی و بهینهسازی سیستماتیک دستورالعملهای هوش مصنوعی آشنا خواهید شد.
این دوره آموزشی به عنوان یک راهنمای کامل و پروژهمحور طراحی شده است تا شرکتکنندگان را با دنیای پیشرفته خودکارسازی (Automation) و عاملهای هوشمند (AI Agents) آشنا کند. در طول این مسیر آموزشی، یادگیرندگان با تکنیکهای عملی برای خودکارسازی وظایف تکراری و خستهکننده با استفاده از قدرت هوش مصنوعی آشنا میشوند. هدف اصلی این دوره، ایجاد توانمندی در افراد برای ساخت انواع مختلفی از عاملهای هوش مصنوعی است که میتوانند به صورت مستقل یا نیمهمستقل وظایف پیچیده را مدیریت کنند.
یکی از ویژگیهای برجسته این برنامه آموزشی، تمرکز بر مفاهیم فنی و مدرنی نظیر پایگاههای داده برداری (Vector Databases) و پروتکل زمینه مدل (Model Context Protocol - MCP) است. شرکتکنندگان یاد میگیرند که چگونه مدلهای هوش مصنوعی خود را به پایگاههای داده متصل کنند تا امکان ذخیرهسازی دانش به صورت بلندمدت فراهم شود. این ترکیبِ هوشمندانه میان خودکارسازی و ساخت عاملها، فرصتی استثنایی را برای تمرین مهارتهای هوش مصنوعی فراهم میآورد و همزمان دانش فنی افراد را در زمینهی مدلهای زبانی بزرگ (LLMs) و مهندسی پرامپت (Prompt Engineering) به شکل قابل توجهی ارتقا میدهد.
در دوره آموزشی AI Automation Workflow, AI Voice Agent, Vector Database, MCP با مفاهیم و ابزارهای پیشرفته خودکارسازی فرآیندها و مدیریت عاملهای هوشمند آشنا خواهید شد.
دوره آموزشی مذکور با این هدف طراحی شده است که به توسعهدهندگان بیاموزد چگونه از ساخت چتباتهای ابتدایی و ساده عبور کرده و به سمت خلق عاملهای هوش مصنوعی (AI Agents) هوشمند حرکت کنند؛ سیستمهایی که نه تنها قادر به پاسخگویی به سوالات هستند، بلکه میتوانند کارهای مختلفی را به صورت خودکار انجام دهند. این مسترکلاس به عنوان تنها منبع مورد نیاز برای پر کردن شکاف میان اپلیکیشنهای سادهای که صرفاً یک لایه ظاهری برای مدلهای زبانی (LLM Wrappers) هستند و سیستمهای پیچیده و آماده تولید (Production-ready) شناخته میشود.
در حالی که اکثر توسعهدهندگان در سطح ساخت برنامههای سادهای مانند «چت با فایلهای PDF» متوقف شدهاند، این دوره آموزشی سطوح بسیار عمیقتری را هدف قرار میدهد. شرکتکنندگان در این مسیر، معماری یک اپلیکیشن عاملمحور و فولاستک را از پایه و با استفاده از فریمورکهای قدرتمندی نظیر Angular برای بخش کاربری و Node.js برای بخش سرور پیادهسازی میکنند. همچنین در این فرایند، پروتکلهای پیشرفتهای مانند MCP (Model Context Protocol) و خط لولههای پیشرفته RAG به صورت عملی مورد استفاده قرار میگیرند. دلیل اهمیت این دوره در تغییر رویکرد صنعت از «هوش مصنوعی مولد» (Generative AI) به سمت «هوش مصنوعی عاملمحور» (Agentic AI) نهفته است. امروزه شرکتهای بزرگ دیگر تنها به دنبال تولید متن نیستند، بلکه به دنبال عاملهایی میگردند که بتوانند پایگاههای داده را پرسوجو کنند، ابزارهای مختلف را اجرا نمایند و به طور مستقل دست به اقدام بزنند. این دوره آموزشی توسعهدهندگان را در خط مقدم این تحول تکنولوژیک قرار میدهد.
در طول این مسیر، یک پلتفرم هوش مصنوعی در سطح حرفهای ساخته میشود که دارای یک رابط کاربری مدرن با انگولار و یک بکاند مستحکم با Node.js و Express است. تمرکز اصلی بر یادگیری صرفِ نحو (Syntax) نیست، بلکه آموزش معماری پشت سیستمهای خودگردان (Autonomous Systems) در اولویت قرار دارد.
در دوره آموزشی Agentic AI Full‑Stack Masterclass: RAG, MCP & AI Agents با مفاهیم و روشهای ساخت سیستمهای خودکار و پیشرفته هوش مصنوعی آشنا خواهید شد.
این دوره به شرکتکنندگان آموزش میدهد که چگونه یک عامل (Agent) هوش مصنوعی عمومی را بسازند که بتواند ابزارهای مختلف موجود بر روی دستگاه آنها را هماهنگ و مدیریت کند. این ابزارها شامل قابلیتهایی مانند خواندن و تبدیل فایلها، فراخوانی ابزارهای شخص ثالث نظیر جستجوی وب و اجرای کد، و در نهایت تحویل نتایج به یک مرورگر محلی هستند. تمرکز اصلی این دوره بر ایجاد یک عامل با یک حلقه اجرایی است که بتواند تاریخچه مکالمات را حفظ کند. این عامل از قابلیت فراخوانی ابزار (Tool Calling) برای انتخاب ابزارها و استدلالهای مناسب استفاده میکند، پیامها را بر اساس نتایج ابزارها بهروزرسانی میکند و در نهایت، تصمیم میگیرد که چه زمانی عملیات را متوقف کند.
در طول دوره، شرکتکنندگان با نحوه مدیریت محتوا از طریق تکنیکهای خلاصهسازی (Summarization) و بازیابی اطلاعات (Retrieval) آشنا خواهند شد. همچنین، روشهای افزودن ارزیابیها (Evals) برای شناسایی شکستها و خطاها در عملکرد عامل آموزش داده میشود. علاوه بر این، به مبحث مهم افزودن گاردریلها (Guardrails) و بررسیهای "انسان در حلقه" (Human-in-the-loop checks) برای اقدامات حساس پرداخته میشود تا از ایمنی و دقت عامل اطمینان حاصل شود. در پایان این دوره، شرکتکنندگان یک عامل هوشمند در اختیار خواهند داشت که میتوانند بهطور مستمر آن را با ابزارهای جدید، پروتکلهای تازه و رابطهای کاربری بیشتر گسترش دهند و توسعه دهند. این عامل یک پایه قوی برای ایجاد سیستمهای هوش مصنوعی خودکار و انعطافپذیر است.
در دوره آموزشی Build an AI Agent from Scratch, v2 با نحوه ساخت، توسعه و ارزیابی یک عامل هوش مصنوعی با قابلیت فراخوانی و هماهنگی ابزارها آشنا خواهید شد.
در این دوره جامع با محوریت پایگاههای داده برداری (Vector Databases)، شرکتکنندگان به دنیای هیجانانگیز فناوریهای پیشرفتهای که در حال متحول ساختن حوزه هوش مصنوعی (AI)، به ویژه هوش مصنوعی مولد (Generative AI) هستند، قدم خواهند گذاشت. این دوره با تمرکز بر «آیندهسازی هوش مصنوعی مولد» (Future-Proofing Generative AI)، دانش و مهارتهای لازم برای مهار قدرت پایگاههای داده برداری را در کاربردهای پیشرفتهای مانند مدلهای زبان بزرگ (LLM)، ترانسفورماتورهای از پیش آموزشدیده مولد (GPT) نظیر ChatGPT، و توسعه هوش عمومی مصنوعی (AGI) در اختیار شرکتکنندگان قرار میدهد. با شروع از مفاهیم پایهای، شرکتکنندگان اصول اولیه پایگاههای داده برداری و نقش آنها در ایجاد تحول در جریانهای کاری هوش مصنوعی را فرا خواهند گرفت. از طریق مثالهای کاربردی و تمرینهای کدنویسی عملی، تکنیکهایی مانند نمایهسازی، ذخیرهسازی، بازیابی دادههای برداری و کاهش بُعدی مورد بررسی قرار میگیرند. همچنین، مهارت لازم برای ادغام پایگاه داده برداری Pinecone با ابزارهای دیگری مانند LangChain و API اوپنایآی (OpenAI API) با استفاده از پایتون (Python)، جهت پیادهسازی کاربردهای واقعی و آزادسازی تمام پتانسیل پایگاههای داده برداری، کسب خواهد شد.
در دوره آموزشی Master Vector Database with Python for AI & LLM Use Cases با استفاده از پایگاههای داده برداری برای کاربردهای پیشرفته هوش مصنوعی و مدلهای زبان بزرگ آشنا خواهید شد.
این دوره یک برنامه آموزشی عملی است که شرکتکنندگان در آن یاد میگیرند که چگونه OpenAI، Ollama و کتابخانههای انتزاعی جدید Microsoft-Extensions-AI (MEAI) را در داتنت ادغام کرده و طیف گستردهای از برنامههای کاربردی هوش مصنوعی مولد (GenAI) را بسازند. این برنامهها شامل موارد متعددی میشوند، از جمله: چتباتها و جستوجوی معنایی، تا تولید مبتنی بر بازیابی (RAG) و تحلیل تصویر. این دوره برای کمک به توسعهدهندگان طراحی شده تا بتوانند از قدرت مدلهای زبانی بزرگ (LLM) برای ساخت راهحلهای نوآورانه در چارچوب داتنت بهره ببرند. در طول این دوره، شرکتکنندگان با مباحث کلیدی متعددی آشنا میشوند. ابتدا، آنها با اکوسیستم هوش مصنوعی در داتنت آشنا خواهند شد. این بخش شامل شناخت کتابخانههای انتزاعی جدید مایکروسافت مانند Microsoft-Extensions-AI است که امکان ادغام و جابهجایی آسان بین ارائهدهندگان مختلف مدلهای زبانی بزرگ مانند OpenAI، Azure AI، Ollama و حتی مدلهای میزبانیشده شخصی را فراهم میکند. سپس، شرکتکنندگان نحوه راهاندازی و پیکربندی ارائهدهندگان مدلهای زبانی بزرگ را میآموزند. این شامل تنظیماتی برای GitHub Models، Ollama و Azure AI Foundry است تا بتوانند بهترین گزینه را برای موارد استفاده خود انتخاب کنند. بخش مهم دیگر، آموزش استفاده از مدلهای زبانی بزرگ برای تکمیل متن با مدلهای OpenAI gpt-5-mini و Ollama llama3.2 است. در این قسمت، آنها یاد میگیرند که چگونه با استفاده از داتنت، مدلهای زبانی بزرگ را برای انجام وظایفی مانند طبقهبندی، خلاصهسازی، استخراج داده، تشخیص ناهنجاری، ترجمه و تحلیل احساسات ادغام کنند.
در دوره آموزشی GenAI for .NET: Build LLM Apps with OpenAI and Ollama با توسعه برنامههای هوش مصنوعی مولد با استفاده از داتنت و مدلهای زبانی بزرگ آشنا خواهید شد.
این دوره آموزشی برای آشنایی با دنیای جذاب پایگاههای داده برداری (Vector Databases) و نحوه ادغام آنها با مدلهای زبان بزرگ (LLMs) مانند GPT طراحی شده است. این ترکیب قدرتمند، جستجوی معنایی، توصیههای شخصیسازیشده، چتباتها و اپلیکیشنهای هوشمند را در صنایع مختلف ممکن میسازد. همچنین، شرکتکنندگان با استراتژیهای مختلف ایندکسگذاری، مکانیزمهای کشینگ و ادغام با ابزارهای شخص ثالث آشنا میشوند تا درک کاملی از هر دو بخش نظری و عملی داشته باشند. از طریق دموها و مثالهای واضح، نحوه استفاده از عملیات برداری، جستجوی شباهت، و تکنیکهای پیشرفته جستوجو برای ایجاد فرصتهای جدید را فرا خواهند گرفت. چه دانشجو، برنامهنویس، دانشمند داده یا علاقهمند به هوش مصنوعی باشید، این دوره به شما کمک میکند تا با ترکیب پایگاههای داده برداری و مدلهای زبان بزرگ، پتانسیل کامل این فناوری را برای ساخت سیستمهای مقیاسپذیر، هوشمند و آماده برای آینده آزاد کنید.
در دوره آموزشی Vector database using LLM with demo با پایگاههای داده برداری و نحوه ادغام آنها با مدلهای زبان بزرگ آشنا خواهید شد.