دانلود ها ی دارای تگ: "یادگیری عمیق"

23 مورد برای عبارت مورد نظر پیدا شد.

دانلود Udemy Deep Learning Projects Masterclass 2021: Build AI Web Apps - آموزش تسلط بر پروژه های یادگیری عمیق

  • بازدید: 3,141
دانلود Udemy Deep Learning Projects Masterclass 2021: Build AI Web Apps - آموزش تسلط بر پروژه های یا
 یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Udemy Deep Learning Projects Masterclass 2021: Build AI Web Apps با آموزش تسلط بر پروژه های یادگیری عمیق اشنا خواهید شد.

دانلود Udemy Deep Learning with React-Native & Python - Build 7 AI Apps - آموزش یادگیری عمیق با ری اکت نیتیو و پایتون

  • بازدید: 3,368
دانلود Udemy Deep Learning with React-Native & Python - Build 7 AI Apps - آموزش یادگیری عمیق با ری ا
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Udemy Deep Learning with React-Native & Python - Build 7 AI Apps با آموزش یادگیری عمیق با ری اکت نیتیو و پایتون اشنا خواهید شد.

دانلود Udemy Deep Learning with Keras and Tensorflow in Python and R - آموزش یادگیری عمیق با کراس و تنسورفالو در پایتون و آر

  • بازدید: 3,850
دانلود Udemy Deep Learning with Keras and Tensorflow in Python and R - آموزش یادگیری عمیق با کراس و
کراس (Keras) یک کتابخانهٔ متن‌باز شبکه عصبی است که به زبان پایتون نوشته شده است و قابل است که بر روی تنسورفلو یا ثینو قابل اجرا است. این نرم‌افزار به منظور آزمایش کردن سریع یادگیری عمیق طراحی شده است و در طراحی آن بر روی کوچک، ماژولار و قابل گسترش بودن توجه شده است. یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود.
در دوره آموزشی Udemy Deep Learning with Keras and Tensorflow in Python and R با آموزش یادگیری عمیق با کراس و تنسورفالو در پایتون و آر اشنا خواهید شد.

دانلود A Practical Guide to Deep Learning with TensorFlow 2.0 and Keras - آموزش یادگیری عمیق با تنسورفالو 2.0 و کراس

  • بازدید: 3,621
دانلود A Practical Guide to Deep Learning with TensorFlow 2.0 and Keras - آموزش یادگیری عمیق با تنسو
تنسورفلو (TensorFlow) یک کتابخانهٔ نرم‌افزاری متن‌باز برای یادگیری ماشین در انواع مختلف وظایف مفهومی و زبان است که در حال حاضر توسط ۵۰ تیم تحقیقاتی و محصولات مختلف گوگل از جمله بازشناسی گفتار، جی‌میل، گوگل فوتوز و جستجو که بسیاری از آن‌ها سابقاً از دیست‌بلیف استفاده کرده بودند، استفاده می‌شود. تنسورفلو در آغاز توسط تیم گوگل برین مرکز تحقیقاتی گوگل به صورت داخلی استفاده می‌شد ولی بعدها در ۹ نوامبر ۲۰۱۵ تحت مجوز آپاچی منتشر شد. TensorFlow نرم افزار یادگیری ماشینی گوگل است. گوگل همچنین از TensorFlow برای توسعه پروژه Magenta هم بهره گرفته که هدف ارتقای هنر ماشینی را دنبال می کند. در همین راستا گوگل یک ملودی 90 ثانیه ای پیانو منتشر کرده که کاملا توسط یک شبکه عصبی ساخته شده است. این موضوع تقریبا تصوری از کارهایی که TensorFlow قادر به انجامشان هست را برای کاربران ایجاد می کند.
در دوره آموزشی A Practical Guide to Deep Learning with TensorFlow 2.0 and Keras با آموزش یادگیری عمیق با تنسورفالو 2.0 و کراس اشنا خواهید شد.

دانلود Deep Learning Foundation Nanodegree - آموزش اصول و مبانی یادگیری عمیق

  • بازدید: 4,187
دانلود Deep Learning Foundation Nanodegree - آموزش اصول و مبانی یادگیری عمیق
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Deep Learning Foundation Nanodegree با آموزش اصول و مبانی یادگیری عمیق اشنا خواهید شد.

دانلود Packt Practical Deep Learning on the Cloud - آموزش یادگیری عمیق بر بستر ابر

  • بازدید: 3,341
دانلود Packt Practical Deep Learning on the Cloud - آموزش یادگیری عمیق بر بستر ابر
 یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Packt Practical Deep Learning on the Cloud با آموزش یادگیری عمیق بر بستر ابر اشنا خواهید شد.

دانلود Udemy Deep Learning Regression with R - آموزش یادگیری عمیق رگرسیون با آر

  • بازدید: 3,458
دانلود Udemy Deep Learning Regression with R - آموزش یادگیری عمیق رگرسیون با آر
یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود.کرس (Keras) یک کتابخانهٔ متن‌باز شبکه عصبی است که به زبان پایتون نوشته شده است و قابل است که بر روی تنسورفلو یا ثینو قابل اجرا است. این نرم‌افزار به منظور آزمایش کردن سریع یادگیری عمیق طراحی شده است و در طراحی آن بر روی کوچک، ماژولار و قابل گسترش بودن توجه شده است.
در دوره آموزشی Udemy Deep Learning Regression with R با آموزش یادگیری عمیق رگرسیون با آر اشنا خواهید شد.

دانلود Packt Deep Learning with Java - آموزش یادگیری عمیق با جاوا

  • بازدید: 3,599
دانلود Packt Deep Learning with Java - آموزش یادگیری عمیق با جاوا
 یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Packt Deep Learning with Java با آموزش یادگیری عمیق با جاوا اشنا خواهید شد.

دانلود Packt Deep Learning Projects with JavaScript - آموزش پروژه های یادگیری عمیق با جاوا اسکریپت

  • بازدید: 4,014
دانلود Packt Deep Learning Projects with JavaScript - آموزش پروژه های یادگیری عمیق با جاوا اسکریپت
یادگیری عمیق (Deep learning) (یادگیری ژرف ماشین، یادگیری ساختار ژرف یا یادگیری سلسله مراتبی) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود. برخی از این روش‌های مدل سازی سبب ساده شدن فرایند یادگیری ماشین (برای نمونه: تشخیص تصویر گربه) می‌شود. در یادگیری ژرف امید به جایگزینی استخراج این ویژگی‌های تصویر به دست بشر (مانند اعضای گربه) با روش‌های کامل خودکار بدون نظارت و نیمه نظارتی وجود دارد. انگیزهٔ نخستین در بوجود آمدن این ساختار یادگیری از راه بررسی ساختار عصبی در مغز انسان الهام گرفته شده است که در آن یاخته‌های عصبی با فرستادن پیام به یکدیگر درک را امکان‌پذیر می‌کنند. بسته به فرض‌های گوناگون در مورد نحوهٔ اتصال این یاخته‌های عصبی، مدل‌ها و ساختارهای مختلفی در این حوزه پیشنهاد و بررسی شده‌اند، هرچند که این مدل‌ها به صورت طبیعی در مغز انسان وجود ندارد و مغز انسان پیچیدگی‌های بیشتری را دارا است. این مدل‌ها نظیر شبکه عصبی عمیق، شبکه عصبی پیچیده، شبکه باور عمیق پیشرفت‌های خوبی را در حوزه‌های پردازش زبان‌های طبیعی، پردازش تصویر ایجاد کرده‌اند.
در دوره آموزشی Packt Deep Learning Projects with JavaScript با آموزش پروژه های یادگیری عمیق با جاوا اسکریپت آشنا می شوید.

دانلود Livelessons Deep Reinforcement Learning and GANs: Advanced Topics in Deep Learning - آموزش یادگیری عمیق تقویتی و گانز: مباحث پیشرفته یادگیری عمیق

  • بازدید: 12,164
دانلود Livelessons Deep Reinforcement Learning and GANs: Advanced Topics in Deep Learning - آموزش یا
یادگیری عمیق (Deep learning) یک زیر شاخه از یادگیری ماشینی و بر مبنای مجموعه‌ای از الگوریتم‌ها است که در تلاش هستند مفاهیم انتزاعی سطح بالا در دادگان را مدل نمایند که این فرایند را با استفاده از یک گراف عمیق که دارای چندین لایه پردازشی متشکل از چندین لایه تبدیلات خطی و غیر خطی هستند، مدل می‌کنند. به بیان دیگر پایهٔ آن بر یادگیری نمایش دانش و ویژگی‌ها در لایه‌های مدل است. یک نمونه آموزشی (برای نمونه: تصویر یک گربه) می‌تواند به صورت‌های گوناگون بسان یک بردار ریاضی پر شده از مقدار به ازای هر پیکسل و در دید کلی تر به شکل یک مجموعه از زیرشکل‌های کوچک‌تر (نظیر اعضای صورت گربه) مدل سازی شود.
در دوره آموزشی Livelessons Deep Reinforcement Learning and GANs: Advanced Topics in Deep Learning با آموزش یادگیری عمیق تقویتی و گانز و مباحث پیشرفته یادگیری عمیق آشنا می شوید.