دانلود ها ی دارای تگ: "ai"
338 مورد برای عبارت مورد نظر پیدا شد.
338 مورد برای عبارت مورد نظر پیدا شد.
نرمافزار Cherry Studio یکی از ابزارهای پیشرفته و تخصصی در حوزه طراحی، تولید و مدیریت پروژههای دیجیتال است که با تمرکز بر افزایش بهرهوری و تسهیل فرایندهای کاری، توجه ویژهای به نیازهای کاربران حرفهای و تیمهای توسعه داده است. این نرمافزار با ترکیب امکانات گرافیکی قدرتمند، قابلیتهای مدیریت پروژه و ابزارهای همکاری تیمی، محیطی یکپارچه و کارآمد را فراهم میکند.
Cherry Studio یک پلتفرم جامع دستیار هوش مصنوعی است که به شما امکان میدهد تمام مدلهایی را که استفاده میکنید در یک مکان واحد متمرکز کنید. میتوانید با دستیارهای مختلف چت کنید، آثار هنری تولید شده توسط هوش مصنوعی خلق کنید یا محتوا را بدون نیاز به جابجایی بین ابزارهای مختلف ترجمه کنید.
این دوره یک راهنمای کامل برای تسلط بر مایکروسافت ورد، اکسل و پاورپوینت است. شما با یادگیری نحوه ترکیب ابزارهای پیشرفته هوش مصنوعی مانند چت جیپیتی و گوگل جمینای، به شیوهای هوشمندانهتر و کارآمدتر کار خواهید کرد. این دوره برای دانشجویان، متخصصان، اساتید و کارآفرینان طراحی شده و کاربردهای عملی و واقعی افزایش بهرهوری با استفاده از هوش مصنوعی را در ابزارهایی که هر روز استفاده میکنید، به شما نشان میدهد. این دوره به منظور ارتقای مهارتهای مایکروسافت آفیس و بهرهگیری کامل از قابلیتهای هوش مصنوعی ارائه شده است. در این دوره، شرکتکنندگان به طور جامع با نحوه استفاده از ابزارهای هوش مصنوعی مانند چت جیپیتی و گوگل جمینای در کنار برنامههای اصلی مایکروسافت آفیس یعنی ورد، اکسل و پاورپوینت آشنا میشوند. هدف اصلی، افزایش بهرهوری و کارایی در محیطهای کاری و تحصیلی است.
در دوره آموزشی MS Office with AI - Word Excel PowerPoint ChatGpt Gemini با استفاده از هوش مصنوعی برای بهبود و بهینهسازی کارهای روزمره در برنامههای مایکروسافت آفیس آشنا خواهید شد.
این دوره آموزشی به شرکتکنندگان میآموزد که چگونه بدون نوشتن حتی یک خط کد، اپلیکیشنهای قدرتمند هوش مصنوعی را در عرض چند دقیقه بسازند. ابزار انقلابی جدید گوگل، OPAL، توسعه اپلیکیشن را برای همه آسان میکند و قدرت مدلهای پیشرفته هوش مصنوعی مانند Gemini را به طور مستقیم در اختیار کاربران قرار میدهد. این دوره دروازهای برای خلاقان، صاحبان کسبوکارهای کوچک، مدرسان، یا هر فر د کنجکاو دیگری است تا ابزارهایی را که همیشه در ذهن داشتهاند، بسازند. در این دوره جامع و گامبهگام، شرکتکنندگان از یک مبتدی مطلق به یک سازنده مطمئن اپلیکیشنهای بدون کد تبدیل خواهند شد. دستورالعملهای واضح و دقیقی برای استفاده از رابط کاربری ساده گوگل OPAL ارائه میشود؛ از نوشتن دستورات به زبان طبیعی گرفته تا کار با ویرایشگر بصری جریان کار. مفاهیم اصلی جریانهای کاری هوش مصنوعی توضیح داده میشود و روش استفاده ازالگوهای آماده برای شروع سریع پروژهها آموزش داده خواهد شد. در این دوره تنها به مباحث تئوری پرداخته نمیشود، بلکه تجربه عملی ساخت مینیاپلیکیشنهای کاربردی به دست میآید که مشکلات دنیای واقعی را حل میکنند و بهرهوری را افزایش میدهند. از ساخت ابزارهای تولید محتوای سفارشی و دستیارهای تحقیقاتی گرفته تا ابزارهای بازاریابی خودکار، شرکتکنندگان در پایان این دوره مجموعهای از اپلیکیشنهای قابل اشتراکگذاری خواهند داشت. پس از تکمیل دوره، گواهی پایان دوره به عنوان تأییدی بر مهارتهای جدید در این زمینه پیشرفته اعطا خواهد شد.
در دوره آموزشی Learn Google OPAL : Building AI Mini-Apps (No Code Required) با روش ساخت اپلیکیشنهای هوش مصنوعی توسط ابزار گوگل OPAL آشنا خواهید شد.
این دوره آموزشی برای آشنایی با دنیای جذاب پایگاههای داده برداری (Vector Databases) و نحوه ادغام آنها با مدلهای زبان بزرگ (LLMs) مانند GPT طراحی شده است. این ترکیب قدرتمند، جستجوی معنایی، توصیههای شخصیسازیشده، چتباتها و اپلیکیشنهای هوشمند را در صنایع مختلف ممکن میسازد. همچنین، شرکتکنندگان با استراتژیهای مختلف ایندکسگذاری، مکانیزمهای کشینگ و ادغام با ابزارهای شخص ثالث آشنا میشوند تا درک کاملی از هر دو بخش نظری و عملی داشته باشند. از طریق دموها و مثالهای واضح، نحوه استفاده از عملیات برداری، جستجوی شباهت، و تکنیکهای پیشرفته جستوجو برای ایجاد فرصتهای جدید را فرا خواهند گرفت. چه دانشجو، برنامهنویس، دانشمند داده یا علاقهمند به هوش مصنوعی باشید، این دوره به شما کمک میکند تا با ترکیب پایگاههای داده برداری و مدلهای زبان بزرگ، پتانسیل کامل این فناوری را برای ساخت سیستمهای مقیاسپذیر، هوشمند و آماده برای آینده آزاد کنید.
در دوره آموزشی Vector database using LLM with demo با پایگاههای داده برداری و نحوه ادغام آنها با مدلهای زبان بزرگ آشنا خواهید شد.
این دوره یک آشنایی کامل با یادگیری تقویتی عمیق است. یادگیری تقویتی عمیق روشهای یادگیری تقویتی را با شبکههای عصبی عمیق پیوند میدهد. تمرکز اصلی بر درک مفاهیم و پیادهسازی عملی آنها است. این دوره با مرور اصول اولیه یادگیری تقویتی و چگونگی عملکرد تقریب توابع با استفاده از شبکههای عصبی آغاز میشود. سپس، به روشهای مبتنی بر ارزش مانند شبکههای Q عمیق (DQN) و نسخههای پیشرفتهتر آنها پرداخته میشود. همچنین الگوریتمهای گرادیان سیاست مانند PPO, DDPG, TD3, و SAC و تکنیکهای پیشرفته برای اکتشاف، یادگیری مبتنی بر مدل، و آموزش چند عاملی را پوشش میدهد. این دوره یک رویکرد عملی دارد و شامل تمرینهای کدنویسی با استفاده از PyTorch است. شرکتکنندگان در این دوره، عوامل هوشمند خود را میسازند، با محیطهایی مانند بازیهای آتاری و شبیهسازیهای رباتیک آزمایش میکنند و یاد میگیرند که چگونه یک فرایند توسعه مناسب برای تحقیقات و کاربردهای یادگیری تقویتی عمیق را تنظیم کنند. علاوه بر الگوریتمهای اصلی، موضوعات مهم و مدرن دیگری نیز پوشش داده میشوند. از جمله این مباحث میتوان به اکتشاف مبتنی بر کنجکاوی، مکانیسمهای توجه، مدلهای جهان، آموزش توزیعشده، و یادگیری تقویتی از بازخورد انسانی اشاره کرد. این موضوعات به شرکتکنندگان دیدگاهی گستردهتر درباره نحوه کاربرد عملی یادگیری تقویتی عمیق در دنیای واقعی میدهند.
در دوره آموزشی Deep Reinforcement Learning با ترکیب یادگیری تقویتی و شبکههای عصبی عمیق آشنا خواهید شد.
در این دوره، دانشپذیران با دموهای گام به گام و هدایتشده، اعتماد به نفس خود را برای یادگیری مهارتهای بنیادی افزایش میدهند. به جای حفظ کردن فرمولهای ریاضی پیچیده یا یادگیری یک زبان برنامهنویسی جدید، تکنیکهای یادگیری ماشین به صورت مفهومی تشریح میشوند تا فراگیران دقیقا درک کنند که این تکنیکها چگونه و چرا کار میکنند. با دنبال کردن مثالهای ساده و بصری و تعامل با مدلهای کاربرپسند مبتنی بر اکسل، شرکتکنندگان میتوانند موضوعاتی مانند رگرسیون خطی و لجستیک، درختهای تصمیم، کا-نزدیکترین همسایهها (KNN)، نایو بیز، خوشهبندی سلسلهمراتبی و تحلیل احساسات را بدون نیاز به نوشتن حتی یک خط کد یاد بگیرند. در بخش ۱ این دوره، شرکتکنندگان با گردش کار یادگیری ماشین و تکنیکهای رایج برای پاکسازی و آمادهسازی دادههای خام جهت تحلیل آشنا میشوند. همچنین، با استفاده از جداول فراوانی، هیستوگرامها و نمودارهای توزیع، تحلیل تکمتغیره را بررسی خواهند کرد و سپس به ابزارهای تحلیل چندمتغیره مانند نقشههای حرارتی، نمودارهای ویولن و جعبهای، نمودارهای پراکندگی و همبستگی خواهند پرداخت.
در دوره آموزشی Machine Learning & Data Science: The Complete Visual Guide با مفاهیم و تکنیکهای یادگیری ماشین و علم داده آشنا خواهید شد.
اتوماسیون امروزه یکی از پرتقاضاترین مهارتهاست و n8n به سرعت به یکی از قدرتمندترین ابزارهای موجود در این زمینه تبدیل شده است. این ابزار منبعباز و انعطافپذیر است و به شما امکان میدهد صدها برنامه و سرویس را به یکدیگر متصل کنید. وقتی n8n با مدلهای هوش مصنوعی مانند OpenAI، Claude، Grok، Gemini و Ollama ترکیب میشود، امکانات بیشماری فراهم میگردد. در این دوره، از مبانی اولیه n8n تا اتوماسیونهای پیشرفته با هوش مصنوعی به صورت گام به گام پیش خواهید رفت. صرفاً مفاهیم تئوری را یاد نخواهید گرفت، بلکه پروژههای واقعی را مرحله به مرحله میسازید. هر درس به گونهای طراحی شده است که تمرین محور باشد، بنابراین در پایان دوره، مجموعهای از ورکفلوهای اتوماسیون خواهید ساخت که میتوانید در کسبوکار یا فعالیت فریلنسری خود از آنها استفاده کنید. این دوره برای افرادی که به دنبال کسب مهارتهای عملی و کاربردی در زمینه اتوماسیون هستند، بسیار مناسب است. از ساخت اتوماسیونهای ساده برای کارهای روزمره تا پروژههای پیچیدهتر، تمامی جنبههای n8n به شما آموزش داده میشود. این آموزش برای افرادی که هیچ تجربهای در زمینه n8n یا اتوماسیون ندارند نیز مفید است، چرا که از ابتدا و با توضیحات کامل شروع میشود. همچنین، کاربران حرفهایتر نیز میتوانند با پروژههای پیشرفتهتر و ترکیب n8n با هوش مصنوعی، مهارتهای خود را ارتقا دهند. این دوره بر یادگیری عملی تأکید دارد و با ارائهی تمرینات و پروژههای واقعی، به شما کمک میکند تا آنچه را آموختهاید، در عمل پیادهسازی کنید.
در دوره آموزشی Complete N8N and AI Automation Masterclass با ابزار n8n و ساخت اتوماسیونهای هوشمند با هوش مصنوعی آشنا خواهید شد.
این دوره جامع و عملی برای افرادی طراحی شده که دانش مقدماتی پایتون دارند و میخواهند به یک توسعهدهنده ماهر عاملهای هوش مصنوعی تبدیل شوند. در این دوره، شرکتکنندگان با چارچوب کیت توسعه عاملهای هوش مصنوعی گوگل (ADK) و اجزای اصلی آن، از جمله عاملها (Agents) و ابزارها (Tools)، از طریق پروژههای عملی به صورت گام به گام آشنا میشوند. آموزش از مفاهیم پایهای آغاز میشود؛ ابتدا نحوه راهاندازی محیط توسعه و ساخت اولین عامل هوشمند آموزش داده میشود. سپس، شرکتکنندگان یاد میگیرند چگونه با ساخت ابزارهای سفارشی، قابلیتهای عامل خود را گسترش دهند. این ابزارها کلید اتصال عامل به هرگونه API یا منبع داده خارجی هستند. به این ترتیب، میتوان عاملی ساخت که قادر به رزرو پرواز، مدیریت تقویم، یا تحلیل دادههای مالی باشد. با پیشرفت در دوره، به مباحث پیشرفتهتر پرداخته میشود. طراحی و پیادهسازی سیستمهای چند عاملی پیچیده، که در آن چندین عامل تخصصی برای حل یک کار دشوار با یکدیگر همکاری میکنند، به طور کامل پوشش داده میشود. همچنین، شرکتکنندگان بر الگوهای ارکستراسیون، از جمله تعاملات ترتیبی، موازی و حلقوی بین عاملها، مسلط خواهند شد. مفاهیم پیشرفتهای مانند خروجیهای ساختاریافته، حافظه پایدار، و الگوی قدرتمند «عامل به عنوان ابزار» نیز بررسی میشود، که به یک عامل اجازه میدهد تا عاملهای دیگر را فراخوانی کند.
در دوره آموشی AI Agents with Google ADK: The Practical Guide با ساخت و توسعه عاملهای هوش مصنوعی آشنا خواهید شد.
این دوره به معرفی شیوههای نوین کار در دنیای مهندسی نرمافزار با بهرهگیری از هوش مصنوعی میپردازد. شرکتکنندگان با تأثیرات هوش مصنوعی بر زمان تحویل نرمافزار، کیفیت کد، و اندازه صنعت نرمافزار آشنا میشوند. همچنین، این دوره به بررسی پیدایش مشاغل فنی جدید مبتنی بر هوش مصنوعی و ادغام نقشها در نتیجه آن میپردازد. مهندسی پرامپت و مهندسی متن (Context Engineering): شرکتکنندگان با اصول مهندسی پرامپت و مهندسی متن آشنا میشوند تا بتوانند دستورات بهتری برای هوش مصنوعی ایجاد کنند. هذیانهای هوش مصنوعی (AI Hallucinations): در این بخش، تعریف هذیانهای هوش مصنوعی، نحوه تشخیص آنها، و بهترین روشها برای کاهش آنها و بهبود کیفیت کد آموزش داده میشود. تولید خودکار اسناد: نحوه تولید خودکار مشخصات الزامات محصول، داستانهای کاربری، موارد آزمون، مشخصات فنی و نمودارهای معماری با استفاده از هوش مصنوعی مورد بحث قرار میگیرد. انواع هوش مصنوعی و آینده شغلی: انواع مختلف هوش مصنوعی شامل هوش محدود (ANI)، هوش عمومی (AGI)، و هوش فوقالعاده (ASI) و همچنین هوش مصنوعی کوانتومی معرفی میشوند. این بخش به آینده مشاغل در دنیای هوش مصنوعی میپردازد و راهکارهای حفظ شغل در این دنیای جدید را ارائه میدهد.
در دوره آموزشی How To Develop End To End Software Using AI (Vibe Coding) با نحوه استفاده از هوش مصنوعی در فرآیند توسعه نرمافزار و آینده شغلی در این حوزه آشنا خواهید شد.
این بوتکمپ جامع مهندسی هوش مصنوعی و مدلهای زبانی بزرگ، دورهای یکپارچه برای یادگیری پایتون، گیت، داکر، پایدنتیک، مدلهای زبانی بزرگ (LLMs)، عاملها (Agents)، بازیابی افزوده-تولیدی (RAG)، لنگچین (LangChain)، لنگگراف (LangGraph) و هوش مصنوعی چندوجهی از پایه است. این دوره تنها یک آموزش نظری نیست. در پایان آن، شرکتکنندگان قادر خواهند بود تا برنامههای کاربردی هوش مصنوعی دنیای واقعی را کدنویسی، استقرار و مقیاسدهی کنند؛ برنامههایی که از همان تکنیکهای قدرتمند چتجیپیتی، جمینی و کلود استفاده میکنند.
در دوره آموزشی Full-Stack AI with Python: LLMs, RAG, Agents & LangGraph با مهندسی هوش مصنوعی، مدلهای زبانی بزرگ و ابزارهای مرتبط آشنا خواهید شد.