دانلود ها ی دارای تگ: "deep learning"
121 مورد برای عبارت مورد نظر پیدا شد.
121 مورد برای عبارت مورد نظر پیدا شد.
این دوره آموزشی به شکلی واضح و عملی طراحی شده تا درک جامعی از شبکههای عصبی به دانشجویان ارائه دهد. این مسیر یادگیری از مفاهیم بسیار پایه آغاز شده و به تدریج به معماریهای پیشرفتهای که امروزه در پژوهشها و صنایع مورد استفاده قرار میگیرند، میپردازد. در ابتدا، دانشجویان با مفاهیم پایهای پرسبترونها و پرسبترونهای چندلایه، که سنگبنای مدلهای شبکههای عصبی هستند، آشنا میشوند. در ادامه، گامبهگام به اصول آموزش شبکهها مانند روشهای مقداردهی اولیه وزنها (Xavier و He)، توابع هزینه و استراتژیهای بهینهسازی پرداخته میشود. تکنیکهای منظمسازی مانند درونریزی (dropout) و نرمالسازی دستهای (batch normalization) نیز پوشش داده میشوند تا دانشجویان با نحوه بهبود عملکرد مدل و کاهش بیشبرازش آشنا شوند. پس از تکمیل مباحث پایه، دوره به شبکههای عمیق پیشخور، اتصالات پسماند و شبکههای عصبی کانولوشنی (CNNs) گسترش مییابد. دانشجویان در این بخش میبینند که چگونه از شبکههای عصبی کانولوشنی هم به صورت نظری و هم عملی با استفاده از کتابخانه PyTorch استفاده میشود. همچنین، نحوه پیادهسازی معماریهای مشابه در زبانهای Julia و MATLAB نیز توضیح داده میشود. سپس، دوره به سمت شبکههای عصبی بازگشتی (RNNs)، LSTMها، GRUها و مدلهای زمانی پیش میرود، که دانشجویان را برای کار با دادههای توالی و مسائل پیشبینی آماده میسازد. در بخشهای پایانی، مکانیزمهای توجه (attention mechanisms) و ترنسفورمرها که امروزه ابزارهای استانداردی در پردازش زبان طبیعی و بینایی کامپیوتر هستند، پوشش داده میشوند. همچنین، خودرمزگذارها (autoencoders)، خودرمزگذارهای متغیر (variational autoencoders)، مدلهای احتمالی مانند شبکههای عصبی بیزی، و رویکردهای خودسازماندهنده مانند شبکههای کوهنن مورد بررسی قرار میگیرند. علاوه بر این، دوره شامل مباحثی درباره شبکههای عصبی گرافی (GNNs) و سایر معماریهای تخصصی مانند شبکههای اکو استیت و ODEs عصبی میشود، که تضمین میکند دانشجویان با طیف گستردهای از تکنیکها آشنایی پیدا کنند.
در این دوره آموزشی Neural Networks with Python : 1 با ساختار و کاربردهای گوناگون شبکههای عصبی آشنا میکند.
این دوره یک آشنایی کامل با یادگیری تقویتی عمیق است. یادگیری تقویتی عمیق روشهای یادگیری تقویتی را با شبکههای عصبی عمیق پیوند میدهد. تمرکز اصلی بر درک مفاهیم و پیادهسازی عملی آنها است. این دوره با مرور اصول اولیه یادگیری تقویتی و چگونگی عملکرد تقریب توابع با استفاده از شبکههای عصبی آغاز میشود. سپس، به روشهای مبتنی بر ارزش مانند شبکههای Q عمیق (DQN) و نسخههای پیشرفتهتر آنها پرداخته میشود. همچنین الگوریتمهای گرادیان سیاست مانند PPO, DDPG, TD3, و SAC و تکنیکهای پیشرفته برای اکتشاف، یادگیری مبتنی بر مدل، و آموزش چند عاملی را پوشش میدهد. این دوره یک رویکرد عملی دارد و شامل تمرینهای کدنویسی با استفاده از PyTorch است. شرکتکنندگان در این دوره، عوامل هوشمند خود را میسازند، با محیطهایی مانند بازیهای آتاری و شبیهسازیهای رباتیک آزمایش میکنند و یاد میگیرند که چگونه یک فرایند توسعه مناسب برای تحقیقات و کاربردهای یادگیری تقویتی عمیق را تنظیم کنند. علاوه بر الگوریتمهای اصلی، موضوعات مهم و مدرن دیگری نیز پوشش داده میشوند. از جمله این مباحث میتوان به اکتشاف مبتنی بر کنجکاوی، مکانیسمهای توجه، مدلهای جهان، آموزش توزیعشده، و یادگیری تقویتی از بازخورد انسانی اشاره کرد. این موضوعات به شرکتکنندگان دیدگاهی گستردهتر درباره نحوه کاربرد عملی یادگیری تقویتی عمیق در دنیای واقعی میدهند.
در دوره آموزشی Deep Reinforcement Learning با ترکیب یادگیری تقویتی و شبکههای عصبی عمیق آشنا خواهید شد.
در این دوره، دانشپذیران با دموهای گام به گام و هدایتشده، اعتماد به نفس خود را برای یادگیری مهارتهای بنیادی افزایش میدهند. به جای حفظ کردن فرمولهای ریاضی پیچیده یا یادگیری یک زبان برنامهنویسی جدید، تکنیکهای یادگیری ماشین به صورت مفهومی تشریح میشوند تا فراگیران دقیقا درک کنند که این تکنیکها چگونه و چرا کار میکنند. با دنبال کردن مثالهای ساده و بصری و تعامل با مدلهای کاربرپسند مبتنی بر اکسل، شرکتکنندگان میتوانند موضوعاتی مانند رگرسیون خطی و لجستیک، درختهای تصمیم، کا-نزدیکترین همسایهها (KNN)، نایو بیز، خوشهبندی سلسلهمراتبی و تحلیل احساسات را بدون نیاز به نوشتن حتی یک خط کد یاد بگیرند. در بخش ۱ این دوره، شرکتکنندگان با گردش کار یادگیری ماشین و تکنیکهای رایج برای پاکسازی و آمادهسازی دادههای خام جهت تحلیل آشنا میشوند. همچنین، با استفاده از جداول فراوانی، هیستوگرامها و نمودارهای توزیع، تحلیل تکمتغیره را بررسی خواهند کرد و سپس به ابزارهای تحلیل چندمتغیره مانند نقشههای حرارتی، نمودارهای ویولن و جعبهای، نمودارهای پراکندگی و همبستگی خواهند پرداخت.
در دوره آموزشی Machine Learning & Data Science: The Complete Visual Guide با مفاهیم و تکنیکهای یادگیری ماشین و علم داده آشنا خواهید شد.
این بوتکمپ جامع مهندسی هوش مصنوعی و مدلهای زبانی بزرگ، دورهای یکپارچه برای یادگیری پایتون، گیت، داکر، پایدنتیک، مدلهای زبانی بزرگ (LLMs)، عاملها (Agents)، بازیابی افزوده-تولیدی (RAG)، لنگچین (LangChain)، لنگگراف (LangGraph) و هوش مصنوعی چندوجهی از پایه است. این دوره تنها یک آموزش نظری نیست. در پایان آن، شرکتکنندگان قادر خواهند بود تا برنامههای کاربردی هوش مصنوعی دنیای واقعی را کدنویسی، استقرار و مقیاسدهی کنند؛ برنامههایی که از همان تکنیکهای قدرتمند چتجیپیتی، جمینی و کلود استفاده میکنند.
در دوره آموزشی Full-Stack AI with Python: LLMs, RAG, Agents & LangGraph با مهندسی هوش مصنوعی، مدلهای زبانی بزرگ و ابزارهای مرتبط آشنا خواهید شد.
این دوره آموزشی برای دانشجویانی طراحی شده که میخواهند از یک برنامهنویس مبتدی به یک متخصص در کتابخانه نامپای تبدیل شوند. نامپای زیربنای اصلی تقریباً تمام کتابخانههای یادگیری ماشین، یادگیری عمیق و هوش مصنوعی است. از جمله این کتابخانهها میتوان به سایپای (SciPy)، پانداس (Pandas)، پایتورچ (PyTorch) و تنسورفلو (TensorFlow) اشاره کرد. این دوره به افراد کمک میکند تا چالشهای رایج در یادگیری نامپای را پشت سر بگذارند و از صرفاً استفاده از توابع فراتر رفته و به درکی عمیق از عملکرد داخلی آن برسند. این دوره یک آموزش ساده در مورد توابع نامپای نیست. بلکه رویکرد آن بر پرورش تفکر نامپای در دانشجویان تمرکز دارد تا بتوانند با اطمینان، کدهای حرفهای را نوشته و اشکالزدایی کنند. دانشجویان در طول دوره با مفاهیم گامبهگام و از طریق تمرینهای کدنویسی، پروژههای واقعی و آزمونها آشنا میشوند. در پایان این دوره، آنها تنها توابع نامپای را نمیشناسند، بلکه نحوه عملکرد آن در پشت پرده محاسبات مربوط به سیستمهای مدرن یادگیری ماشین و هوش مصنوعی را نیز درک خواهند کرد. این دانش به دانشجویان اعتماد به نفس لازم برای کار با کتابخانههای پیشرفته و پروژههای دنیای واقعی را میدهد.
در دوره آموزشی NumPy Mastery for Machine Learning & AI-Beginner to Pro 2025 با کتابخانه نامپای، نحوه تفکر در آن، و کاربردهای آن در یادگیری ماشین و هوش مصنوعی آشنا خواهید شد.
این دوره جامع و عملی در زمینه LLMOps برای توسعهدهندگان، دانشمندان داده، مهندسان MLOps و علاقهمندان به هوش مصنوعی طراحی شده است. هدف آن، آموزش ساخت، مدیریت و استقرار LLMهای مقیاسپذیر با استفاده از ابزارهای پیشرفته و فناوریهای مدرن مبتنی بر رایانش ابری است. در این دوره، شرکتکنندگان میآموزند که چگونه فاصله بین ساخت برنامههای قدرتمند LLM و استقرار آنها در محیطهای تولید واقعی را با استفاده از ابزارهایی مانند GitHub، Jenkins، Docker، Kubernetes، FastAPI، سرویسهای ابری (AWS و GCP) و خطوط لوله CI/CD از بین ببرند. در طول این دوره، چندین پروژه کاربردی و جامع پیادهسازی میشود. این پروژهها نحوهی عملیاتی کردن مدلهای HuggingFace Transformers، مدلهای بهینهسازیشده و استقرار APIهای Groq را به همراه نظارت بر عملکرد با استفاده از Prometheus، Grafana و SonarQube نشان میدهند. همچنین، شرکتکنندگان مدیریت زیرساخت و هماهنگسازی را با استفاده از Kubernetes (Minikube و GKE)، AWS Fargate و Google Artifact Registry (GAR) یاد خواهند گرفت.
در دوره آموزشی LLMOps And AIOps Bootcamp With 9+ End To End Projects با استقرار و مدیریت مدلهای زبانی بزرگ در محیطهای تولیدی آشنا خواهید شد.
این دوره آموزشی به افراد علاقهمند به توسعه برنامههای موبایل با استفاده از فریمورک Flutter و بهرهگیری از قابلیتهای یادگیری ماشین ارائه شده توسط Firebase ML Kit میپردازد. شرکتکنندگان در این دوره با مفاهیم اساسی و پیشرفته Firebase ML Kit آشنا شده و نحوه پیادهسازی ویژگیهای متنوعی مانند برچسبگذاری تصاویر، تشخیص بارکد، تشخیص چهره و لبخند، تشخیص متن، ترجمه زبان و شناسایی زبان را در برنامههای Flutter فرا خواهند گرفت. این دوره با ارائه مثالهای عملی و ساخت پروژههای واقعی، دانش و مهارتهای لازم برای ساخت برنامههای هوشمند اندروید و iOS را با استفاده از یک کدبیس مشترک در اختیار شرکتکنندگان قرار میدهد. هدف نهایی این دوره، توانمندسازی توسعهدهندگان در استفاده از قدرت یادگیری ماشین در برنامههای Flutter و آمادهسازی آنها برای آینده رو به رشد توسعه برنامههای هوشمند است.
در دوره آموزشی Flutter و Firebase ML Kit با نحوه ساخت برنامههای هوشمند موبایل با استفاده از قابلیتهای یادگیری ماشین آشنا خواهید شد.
به دورهٔ عملی و آیندهنگرانهٔ سورا، یعنی ابزار تولید ویدیو از متن که توسط شرکت OpenAI معرفی شده است، خوش آمدید. این دوره برای تمام افراد از جمله تولیدکنندگان محتوا که به دنبال ارتقای مهارتهای خود در داستانگویی هستند، مدرسان و اساتیدی که قصد دارند مباحث درسی خود را به شکلی جذاب و پویا به نمایش بگذارند، بازاریابان که میخواهند کمپینهایی جذاب و چشمگیر خلق کنند، و یا حتی افرادی که شیفتهٔ آیندهٔ هوش مصنوعی هستند، طراحی شده است. سورا یک جهش بزرگ در زمینهٔ تولید محتوا محسوب میشود؛ زیرا این ابزار متنهای ساده را به کلیپهای ویدیویی سینمایی و باکیفیت تبدیل میکند. در این دوره، شرکتکنندگان تنها با سورا آشنا نخواهند شد، بلکه با آن کار میکنند. از طریق آموزشهای گام به گام، کاربردهای واقعی و چالشهای خلاقانه، آنها مهارتهایی را به دست میآورند که از یک فرد مبتدی کنجکاو به یک تولیدکنندهٔ ویدیوی حرفهای تبدیل شوند. شرکتکنندگان نحوهٔ نوشتن دستورات (prompt) دقیق برای رسیدن به نتایج بهتر، استفاده از تکنیکهای داستانگویی بصری، بازسازی و ویرایش صحنهها و حتی متحرکسازی تصاویر ثابت را فرا خواهند گرفت. این دوره تمام مراحل، از نکات فنی گرفته تا اصول هنری در تولید ویدیو را پوشش میدهد و به افراد کمک میکند تا از تمام پتانسیل خلاقانهٔ این ابزار انقلابی بهره ببرند. در پایان دوره، شرکتکنندگان مجموعهای از ویدیوهای ساخته شده با هوش مصنوعی را خواهند داشت که بازتابی از دیدگاه و خلاقیت آنهاست. این ویدیوها آمادهٔ اشتراکگذاری، تبلیغ یا توسعهٔ بیشتر هستند. بیایید سفر خود را در عصر جدید تولید ویدیو آغاز کنیم؛ آینده در دستان شماست.
در دوره آموزشی Mastering AI Video Creation with Sora با تولید ویدیو با استفاده از هوش مصنوعی آشنا خواهید شد.
این دوره جامع، شرکتکنندگان را با مبانی علوم داده و هوش مصنوعی مولد آشنا میکند و آنها را قادر میسازد تا از طریق پروژههای عملی، مهارتهای لازم برای ورود به بازار کار را کسب کنند. این دوره با رویکرد یادگیری از طریق انجام دادن، مفاهیم پیچیده را به شیوهای ساده و کاربردی ارائه میدهد و شامل مباحثی از جمله برنامهنویسی پایتون، آمار و ریاضیات مورد نیاز، تکنیکهای پیشپردازش و تحلیل داده، الگوریتمهای یادگیری ماشین نظارت شده و بدون نظارت، و همچنین مفاهیم و کاربردهای هوش مصنوعی مولد و عاملمحور میباشد. علاوه بر آموزشهای فنی، این دوره راهنماییهای لازم برای ساخت رزومه و موفقیت در مصاحبههای شغلی را نیز ارائه میدهد تا شرکتکنندگان بتوانند با آمادگی کامل وارد حوزه علوم داده شوند.
در دوره آموزشی Full Stack Data Science with GenAI با مفاهیم و کاربردهای علوم داده و هوش مصنوعی مولد آشنا خواهید شد.
این دوره برای کسانی طراحی شده است که میخواهند یک سیستم تشخیص آتش در زمان واقعی بسازند، بدون آنکه درگیر پیچیدگیهای تئوری شوند. شرکتکنندگان در این دوره به سرعت یاد خواهند گرفت که چگونه یک مدل تشخیص آتش مبتنی بر YOLO را راهاندازی کرده و آن را با FastAPI برای پردازش بکاند و Next.js برای رابط کاربری وب ادغام کنند. این رویکرد عملی به افراد امکان میدهد تا به جای غرق شدن در مباحث نظری عمیق، مستقیماً به سمت ساخت یک پروژه کاربردی حرکت کنند. در این دوره، موارد مختلفی مورد بررسی قرار میگیرد تا شرکتکنندگان تجربه جامعی به دست آورند. ابتدا، نحوه نصب و پیکربندی YOLO برای تشخیص آتش آموزش داده میشود، که گام اساسی برای شروع کار با مدلهای بینایی کامپیوتر است. سپس، شرکتکنندگان یاد میگیرند که چگونه یک بکاند FastAPI را برای تشخیص آتش در زمان واقعی راهاندازی کنند، که برای ارتباط سریع و مؤثر بین مدل و رابط کاربری ضروری است. همچنین، ساخت یک فرانتاند Next.js برای نمایش بصری نتایج تشخیص آتش نیز آموزش داده میشود، که به کاربران امکان میدهد وضعیت را به صورت گرافیکی مشاهده کنند. یکی دیگر از جنبههای مهم دوره، پیادهسازی یک سیستم هشدار برای اعلانهای بلادرنگ است تا کاربران فوراً از وقوع آتشسوزی مطلع شوند. ذخیره و بازیابی کارآمد گزارشهای تشخیص آتش نیز بخشی از برنامه آموزشی است که برای تحلیلهای بعدی و بهبود سیستم اهمیت دارد. علاوه بر این، دوره بهینهسازی مدلهای YOLO برای عملکرد بهتر را پوشش میدهد، که برای افزایش دقت و سرعت تشخیص حیاتی است. شرکتکنندگان همچنین با نحوه استقرار برنامه خود برای استفاده در محیطهای واقعی آشنا میشوند و تجربه عملی در ساخت برنامههای وب مبتنی بر هوش مصنوعی به دست میآورند.
در دوره آموزشی Build a Fire Detection with AI: YOLO, FastAPI & Next.js با ساخت یک سیستم تشخیص آتش در زمان واقعی آشنا خواهید شد.